Suppr超能文献

颚骨的具身锁定机制使陷阱颚蚁 Odontomachus kuroiwae 能够超高速发力。

Embodied latch mechanism of the mandible to power at ultra-high speed in the trap-jaw ant Odontomachus kuroiwae.

机构信息

Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan.

Department of Mechanical Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

出版信息

J Exp Biol. 2023 May 15;226(10). doi: 10.1242/jeb.245396. Epub 2023 May 29.

Abstract

Rapid movements of limbs and appendages, faster than those produced by simple muscle contraction alone, are generated through mechanical networks consisting of springs and latches. The latch plays a central role in these spring-loaded mechanisms, but the structural details of the latch are not always known. The mandibles of the trap-jaw ant Odontomachus kuroiwae closes the mandible extremely quickly to capture prey or to perform mandible-powered defensive jumps to avoid potential threats. The jump is mediated by a mechanical spring and latch system embodied in the mandible. An ant can strike the tip of the mandible onto the surface of an obstacle (prey, predator or ground) in order to bounce its body away from potential threats. The angular velocity of the closing mandible was 2.3×104 rad s-1 (1.3×106 deg s-1). Latching of the joint is a key mechanism to aid the storage of energy required to power the ballistic movements of the mandibles. We have identified the fine structure of two latch systems on the mandible forming a 'ball joint' using an X-ray micro-computational tomography system (X-ray micro-CT) and X-ray live imaging with a synchrotron. Here, we describe the surface of the inner section of the socket and a projection on the lip of the ball. The X-ray live imaging and movements of the 3D model show that the ball with a detent ridge slipped into a socket and over the socket ridge before snapping back at the groove edge. Our results give insight into the complex spring-latch systems that underpin ultra-fast movements in biological systems.

摘要

肢体和附肢的快速运动,比单纯的肌肉收缩产生的速度还要快,是通过由弹簧和闩锁组成的机械网络产生的。闩锁在这些弹簧加载机构中起着核心作用,但闩锁的结构细节并不总是为人所知。陷阱颚蚁 Odontomachus kuroiwae 的下颚能够极其迅速地闭合,以捕捉猎物或进行下颚驱动的防御性跳跃,以避免潜在的威胁。这种跳跃是由下颚中的机械弹簧和闩锁系统介导的。蚂蚁可以将下颚的尖端撞击到障碍物(猎物、捕食者或地面)的表面上,从而使身体从潜在的威胁中弹开。下颚的闭合角速度为 2.3×104 rad s-1(1.3×106 deg s-1)。关节的闩锁是一个关键机制,可以帮助储存能量,为下颚的弹道运动提供动力。我们使用 X 射线微计算机断层扫描系统(X 射线微 CT)和同步加速器的 X 射线实时成像,在颚上确定了两个形成“球关节”的闩锁系统的精细结构。在这里,我们描述了插座内表面的部分和球上的唇的投影。X 射线实时成像和 3D 模型的运动表明,带有定位凸脊的球滑入插座,并越过插座凸脊,然后在凹槽边缘弹回。我们的结果深入了解了支撑生物系统中超快速运动的复杂弹簧闩锁系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验