Suppr超能文献

用于氧还原反应的无碳、无粘结剂MnO@Mn催化剂

Carbon-Free, Binder-Free MnO@Mn Catalyst for Oxygen Reduction Reaction.

作者信息

Meng Xu, Liu Tao, Qin Meng, Liu Zigeng, Wang Wei

机构信息

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Forschungszentrum Jülich, IEK-9, 52425 Jülich, Germany.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 26;15(16):20110-20119. doi: 10.1021/acsami.3c00651. Epub 2023 Apr 11.

Abstract

Reasonable design and feasible preparation of low-cost and stable oxygen reduction reaction (ORR) catalysts with excellent performance play a key role in the development of fuel cells and metal-air batteries. A 3D porous superimposed nanosheet catalyst composed of metal manganese covered with MnO nanofilms (P-NS-MnO@Mn) was designed and synthesized by rotating disk electrodes (RDEs) through one-step electrodeposition. The catalyst contains no carbon material. Therefore, the oxidation and corrosion of the carbon material during use can be avoided, resulting in excellent stability. The structural and composition characterizations indicate that the nanosheets with sharp edges exist on the surface of the wall surrounding the macropore (diameter ∼ 5.07 μm) and they connect tightly. Both the nanosheets and the wall of the macropore are composed of metal manganese covered completely with MnO film with a thickness of less than 5 nm. The half-wave potential of the synthesized P-NS-MnO@Mn catalyst is 0.86 V. Besides, the catalyst exhibits good stability with almost no decay after a 30 h chronoamperometric test. Finite element analysis (FEA) simulation reveals the high local electric field intensity surrounding the sharp edges of the nanosheets. Density functional theory (DFT) calculations reveal that the novel nanosheet structure composed of MnO nanofilms covered on the surface of the Mn matrix accelerates the electronic transfer of the MnO nanofilms during the ORR process. The high local electric field intensity near the sharp edge of the nanosheets effectively promotes the orbital hybridization and strengthens the adsorbing Mn-O bond between the active site Mn in the nanosheets and the intermediate OOH* during the ORR process. This study provides a new strategy for preparing transition metal oxide catalysts and a novel idea about the key factors affecting the catalytic activity of transition metal oxides for the ORR.

摘要

合理设计并制备出低成本、性能稳定且具有优异性能的氧还原反应(ORR)催化剂,对燃料电池和金属空气电池的发展起着关键作用。通过旋转圆盘电极(RDE)一步电沉积法设计并合成了一种由覆盖有MnO纳米薄膜的金属锰组成的三维多孔叠加纳米片催化剂(P-NS-MnO@Mn)。该催化剂不含碳材料。因此,可避免使用过程中碳材料的氧化和腐蚀,从而具有出色的稳定性。结构和成分表征表明,围绕大孔(直径约5.07μm)的壁表面存在边缘尖锐的纳米片,且它们紧密相连。纳米片和大孔壁均由完全覆盖有厚度小于5nm的MnO薄膜的金属锰组成。合成的P-NS-MnO@Mn催化剂的半波电位为0.86V。此外,经过30小时的计时电流测试后,该催化剂表现出良好的稳定性,几乎没有衰减。有限元分析(FEA)模拟揭示了纳米片边缘周围的高局部电场强度。密度泛函理论(DFT)计算表明,由覆盖在Mn基体表面的MnO纳米薄膜组成的新型纳米片结构在ORR过程中加速了MnO纳米薄膜的电子转移。纳米片边缘附近的高局部电场强度有效地促进了轨道杂化,并在ORR过程中加强了纳米片中活性位点Mn与中间体OOH*之间的吸附性Mn-O键。本研究为制备过渡金属氧化物催化剂提供了一种新策略,并为影响过渡金属氧化物对ORR催化活性的关键因素提供了新的思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验