Suppr超能文献

RefinePocket:一种用于蛋白质结合位点预测的注意力增强和掩码引导的深度学习方法。

RefinePocket: An Attention-Enhanced and Mask-Guided Deep Learning Approach for Protein Binding Site Prediction.

作者信息

Liu Yongchang, Li Peiying, Tu Shikui, Xu Lei

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2023 Sep-Oct;20(5):3314-3321. doi: 10.1109/TCBB.2023.3265640. Epub 2023 Oct 9.

Abstract

Protein binding site prediction is an important prerequisite task of drug discovery and design. While binding sites are very small, irregular and varied in shape, making the prediction very challenging. Standard 3D U-Net has been adopted to predict binding sites but got stuck with unsatisfactory prediction results, incomplete, out-of-bounds, or even failed. The reason is that this scheme is less capable of extracting the chemical interactions of the entire region and hardly takes into account the difficulty of segmenting complex shapes. In this paper, we propose a refined U-Net architecture, called RefinePocket, consisting of an attention-enhanced encoder and a mask-guided decoder. During encoding, taking binding site proposal as input, we employ Dual Attention Block (DAB) hierarchically to capture rich global information, exploring residue relationship and chemical correlations in spatial and channel dimensions respectively. Then, based on the enhanced representation extracted by the encoder, we devise Refine Block (RB) in the decoder to enable self-guided refinement of uncertain regions gradually, resulting in more precise segmentation. Experiments show that DAB and RB complement and promote each other, making RefinePocket has an average improvement of 10.02% on DCC and 4.26% on DVO compared with the state-of-the-art method on four test sets.

摘要

蛋白质结合位点预测是药物发现与设计的一项重要前提任务。虽然结合位点非常小、形状不规则且多样,这使得预测极具挑战性。标准的3D U-Net已被用于预测结合位点,但却陷入了不尽人意的预测结果,如不完整、超出边界甚至失败。原因在于该方案提取整个区域化学相互作用的能力较弱,且几乎没有考虑到分割复杂形状的难度。在本文中,我们提出了一种改进的U-Net架构,称为RefinePocket,它由一个注意力增强编码器和一个掩码引导解码器组成。在编码过程中,以结合位点提议作为输入,我们分层使用双注意力模块(DAB)来捕获丰富的全局信息,分别在空间和通道维度上探索残基关系和化学相关性。然后,基于编码器提取的增强表示,我们在解码器中设计了细化模块(RB),以逐步实现对不确定区域的自引导细化,从而得到更精确的分割。实验表明,DAB和RB相互补充、相互促进,使得RefinePocket在四个测试集上与现有最佳方法相比,在DCC上平均提高了10.02%,在DVO上平均提高了4.26%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验