Suppr超能文献

从序列数据预测蛋白质-配体结合位点的机器学习方法。

Machine learning approaches for predicting protein-ligand binding sites from sequence data.

作者信息

Vural Orhun, Jololian Leon

机构信息

Department of Electrical and Computer Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.

出版信息

Front Bioinform. 2025 Feb 3;5:1520382. doi: 10.3389/fbinf.2025.1520382. eCollection 2025.

Abstract

Proteins, composed of amino acids, are crucial for a wide range of biological functions. Proteins have various interaction sites, one of which is the protein-ligand binding site, essential for molecular interactions and biochemical reactions. These sites enable proteins to bind with other molecules, facilitating key biological functions. Accurate prediction of these binding sites is pivotal in computational drug discovery, helping to identify therapeutic targets and facilitate treatment development. Machine learning has made significant contributions to this field by improving the prediction of protein-ligand interactions. This paper reviews studies that use machine learning to predict protein-ligand binding sites from sequence data, focusing on recent advancements. The review examines various embedding methods and machine learning architectures, addressing current challenges and the ongoing debates in the field. Additionally, research gaps in the existing literature are highlighted, and potential future directions for advancing the field are discussed. This study provides a thorough overview of sequence-based approaches for predicting protein-ligand binding sites, offering insights into the current state of research and future possibilities.

摘要

由氨基酸组成的蛋白质对于广泛的生物学功能至关重要。蛋白质具有各种相互作用位点,其中之一是蛋白质 - 配体结合位点,它对于分子相互作用和生化反应至关重要。这些位点使蛋白质能够与其他分子结合,从而促进关键的生物学功能。准确预测这些结合位点在计算机辅助药物发现中至关重要,有助于确定治疗靶点并推动治疗方法的开发。机器学习通过改进蛋白质 - 配体相互作用的预测,为该领域做出了重大贡献。本文综述了利用机器学习从序列数据预测蛋白质 - 配体结合位点的研究,重点关注近期进展。该综述考察了各种嵌入方法和机器学习架构,探讨了当前面临的挑战以及该领域正在进行的争论。此外,还突出了现有文献中的研究空白,并讨论了推动该领域发展的潜在未来方向。本研究全面概述了基于序列的蛋白质 - 配体结合位点预测方法,深入了解了当前的研究现状和未来可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0d4/11830693/7176d0808855/fbinf-05-1520382-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验