Department of Automation, Xiamen University, Xiamen, Fujian, China.
National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China.
BMC Bioinformatics. 2023 Apr 11;24(1):142. doi: 10.1186/s12859-023-05278-0.
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is highly phenotypically and genetically heterogeneous. With the accumulation of biological sequencing data, more and more studies shift to molecular subtype-first approach, from identifying molecular subtypes based on genetic and molecular data to linking molecular subtypes with clinical manifestation, which can reduce heterogeneity before phenotypic profiling.
In this study, we perform similarity network fusion to integrate gene and gene set expression data of multiple human brain cell types for ASD molecular subtype identification. Then we apply subtype-specific differential gene and gene set expression analyses to study expression patterns specific to molecular subtypes in each cell type. To demonstrate the biological and practical significance, we analyze the molecular subtypes, investigate their correlation with ASD clinical phenotype, and construct ASD molecular subtype prediction models.
The identified molecular subtype-specific gene and gene set expression may be used to differentiate ASD molecular subtypes, facilitating the diagnosis and treatment of ASD. Our method provides an analytical pipeline for the identification of molecular subtypes and even disease subtypes of complex disorders.
自闭症谱系障碍(ASD)是一种复杂的神经发育障碍,具有高度表型和遗传异质性。随着生物测序数据的积累,越来越多的研究转向基于分子亚型的方法,从基于遗传和分子数据识别分子亚型到将分子亚型与临床表现联系起来,可以在表型分析之前减少异质性。
在这项研究中,我们进行相似网络融合,整合多种人类脑细胞类型的基因和基因集表达数据,以识别 ASD 的分子亚型。然后,我们应用特定于亚型的差异基因和基因集表达分析来研究每种细胞类型中特定于分子亚型的表达模式。为了证明其生物学和实际意义,我们分析了分子亚型,研究了它们与 ASD 临床表型的相关性,并构建了 ASD 分子亚型预测模型。
鉴定出的特定于分子亚型的基因和基因集表达可用于区分 ASD 分子亚型,有助于 ASD 的诊断和治疗。我们的方法为复杂疾病的分子亚型甚至疾病亚型的鉴定提供了一个分析流程。