Suppr超能文献

解析自闭症谱系障碍的免疫遗传学图谱:一种综合生物信息学方法。

Unraveling the immunogenetic landscape of autism spectrum disorder: a comprehensive bioinformatics approach.

机构信息

Department of Psychiatric Medicine, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China.

Department of Rehabilitation Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China.

出版信息

Front Immunol. 2024 Apr 24;15:1347139. doi: 10.3389/fimmu.2024.1347139. eCollection 2024.

Abstract

BACKGROUND

Autism spectrum disorder (ASD) is a disease characterized by social disorder. Recently, the population affected by ASD has gradually increased around the world. There are great difficulties in diagnosis and treatment at present.

METHODS

The ASD datasets were obtained from the Gene Expression Omnibus database and the immune-relevant genes were downloaded from a previously published compilation. Subsequently, we used WGCNA to screen the modules related to the ASD and immune. We also choose the best combination and screen out the core genes from Consensus Machine Learning Driven Signatures (CMLS). Subsequently, we evaluated the genetic correlation between immune cells and ASD used GNOVA. And pleiotropic regions identified by PLACO and CPASSOC between ASD and immune cells. FUMA was used to identify pleiotropic regions, and expression trait loci (EQTL) analysis was used to determine their expression in different tissues and cells. Finally, we use qPCR to detect the gene expression level of the core gene.

RESULTS

We found a close relationship between neutrophils and ASD, and subsequently, CMLS identified a total of 47 potential candidate genes. Secondly, GNOVA showed a significant genetic correlation between neutrophils and ASD, and PLACO and CPASSOC identified a total of 14 pleiotropic regions. We annotated the 14 regions mentioned above and identified a total of 6 potential candidate genes. Through EQTL, we found that the CFLAR gene has a specific expression pattern in neutrophils, suggesting that it may serve as a potential biomarker for ASD and is closely related to its pathogenesis.

CONCLUSIONS

In conclusion, our study yields unprecedented insights into the molecular and genetic heterogeneity of ASD through a comprehensive bioinformatics analysis. These valuable findings hold significant implications for tailoring personalized ASD therapies.

摘要

背景

自闭症谱系障碍(ASD)是一种以社交障碍为特征的疾病。最近,全球范围内受 ASD 影响的人群逐渐增加。目前在诊断和治疗方面存在很大困难。

方法

从基因表达综合数据库中获取 ASD 数据集,并从之前发表的汇编中下载免疫相关基因。随后,我们使用 WGCNA 筛选与 ASD 和免疫相关的模块。我们还选择了最佳组合,并从共识机器学习驱动的特征(CMLS)中筛选出核心基因。随后,我们使用 GNOVA 评估免疫细胞与 ASD 之间的遗传相关性。并通过 PLACO 和 CPASSOC 识别 ASD 与免疫细胞之间的多效性区域。FUMA 用于识别多效性区域,表达特征区域(eQTL)分析用于确定它们在不同组织和细胞中的表达。最后,我们使用 qPCR 检测核心基因的表达水平。

结果

我们发现中性粒细胞与 ASD 密切相关,随后 CMLS 总共确定了 47 个潜在的候选基因。其次,GNOVA 显示中性粒细胞与 ASD 之间存在显著的遗传相关性,PLACO 和 CPASSOC 总共确定了 14 个多效性区域。我们对上述 14 个区域进行注释,总共确定了 6 个潜在的候选基因。通过 eQTL,我们发现 CFLAR 基因在中性粒细胞中有特定的表达模式,表明其可能作为 ASD 的潜在生物标志物,与疾病的发病机制密切相关。

结论

总之,我们通过全面的生物信息学分析,对 ASD 的分子和遗传异质性进行了前所未有的研究。这些有价值的发现对定制个性化 ASD 治疗具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ec5/11080648/255867291d5e/fimmu-15-1347139-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验