Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310058, China.
Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
J Phys Chem B. 2023 Apr 20;127(15):3452-3462. doi: 10.1021/acs.jpcb.3c00869. Epub 2023 Apr 12.
Water has anomalous thermodynamic and kinetic properties distinct from ordinary liquids. The famous examples are the density maximum at 4 °C and the viscosity decrease upon pressurization. The presence of the second critical point has been considered to be responsible for these anomalies since its discovery in ST2 water. Recently, its existence has been confirmed firmly in TIP4P/2005, which is one of the most successful classical models of water, by Debenedetti et al. [Debenedetti et al. 2020, 369, 289]. Here, we study the water structure and thermodynamic and dynamic quantities in a wide temperature ()-pressure () range, including the vicinity of the second critical point, by extensive molecular dynamics simulation of this water model. We reveal that a hierarchical two-state model with the cooperative formation of water tetrahedral structures via hydrogen bonding can describe the , -dependences of structure, thermodynamic and kinetic anomalies, and criticality of TIP4P/2005 water in a unified manner. TIP4P/2005 water shows very similar behaviors to real water in all these aspects, suggesting a possible existence of the second critical point in the water. Our physical description based on the two order parameters, the density and the fraction of locally favored tetrahedral structures, indicates that the latter is the relevant order parameter for the second critical point, which is supported by the analysis of the critical fluctuations. The different nature of the density and the fraction of tetrahedral arrangements, conserved and nonconserved, may be key to unambiguously identifying the relevant order parameter.
水具有不同于普通液体的异常热力学和动力学性质。著名的例子是在 4°C 时密度最大和加压时粘度降低。自从在 ST2 水中发现第二个临界点以来,人们一直认为它的存在是这些异常现象的原因。最近,Debenedetti 等人 [Debenedetti 等人,2020 年,369 页,289 页] 通过广泛的分子动力学模拟证实了这一水模型在 TIP4P/2005 中存在。在这里,我们通过对该水模型进行广泛的分子动力学模拟,研究了包括第二个临界点附近在内的宽温度()-压力()范围内的水结构和热力学及动力学性质。我们揭示了一个层次化的两态模型,通过氢键协同形成水四面体结构,可以统一描述 TIP4P/2005 水的结构、热力学和动力学异常以及临界点的,依赖性。TIP4P/2005 水在所有这些方面都表现出与实际水非常相似的行为,这表明水中可能存在第二个临界点。我们基于两个序参数,即密度和局部有利的四面体结构分数的物理描述表明,后者是第二个临界点的相关序参数,这得到了临界涨落分析的支持。密度和四面体排列分数的不同性质,守恒和非守恒,可能是明确识别相关序参数的关键。