Suppr超能文献

压力下核量子效应在玻璃态水中的表现:玻璃化转变与压力诱导相变

Nuclear quantum effects on glassy water under pressure: Vitrification and pressure-induced transformations.

作者信息

Eltareb Ali, Khan Bibi A, Lopez Gustavo E, Giovambattista Nicolas

机构信息

Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA.

Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA.

出版信息

J Chem Phys. 2024 Dec 21;161(23). doi: 10.1063/5.0238823.

Abstract

We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied). While the structure of the IA is not very sensitive to NQE, the geometry of the hydrogen-bond (HB) is. NQE leads to longer and less linear HB in LDA, HDA, and ice Ih than found in the classical case. Interestingly, the delocalization of the H/D atoms is non-negligible and identical in LDA, HDA, and ice Ih at all pressures studied. Our isothermal compression/decompression MD/PIMD simulations show that classical and quantum H2O and D2O all exhibit LDA-HDA and ice Ih-HDA transformations, consistent with experiments. The inclusion of NQE leads to a softer HB-network, which lowers slightly the LDA/ice Ih-to-HDA transformation pressures. Interestingly, the HB in HDA is longer and less linear than in LDA, which is counterintuitive given that HDA is ≈25% denser than LDA. Overall, our results show that, while classical computer simulations provide the correct qualitative phenomenology of ice and glassy water, NQEs are necessary for a quantitative description.

摘要

我们使用q-TIP4P/F模型在广泛的温度和压力范围内对H₂O和D₂O进行经典分子动力学(MD)和路径积分MD(PIMD)模拟,以研究核量子效应(NQEs)对以下方面的影响:(i)在不同压力下等压冷却时液态水的玻璃化;(ii)在恒定温度下低密度非晶冰和高密度非晶冰(LDA和HDA)以及六方冰Ih和HDA之间的压力诱导转变。在等压冷却过程中,经典的和量子的H₂O和D₂O都会玻璃化为一系列连续的中间非晶冰(IA),其密度介于LDA和HDA之间(取决于压力)。重要的是,如果考虑NQEs,IA的密度会有相当大的变化(对于所有研究压力下的冰Ih也有类似结论)。虽然IA的结构对NQE不太敏感,但氢键(HB)的几何结构却很敏感。与经典情况相比,NQE导致LDA、HDA和冰Ih中的HB更长且线性更差。有趣的是,在所有研究压力下,H/D原子的离域在LDA、HDA和冰Ih中都是不可忽略且相同的。我们的等温压缩/减压MD/PIMD模拟表明,经典的和量子的H₂O和D₂O都表现出LDA-HDA以及冰Ih-HDA转变,这与实验结果一致。考虑NQE会导致HB网络更软,这会使LDA/冰Ih到HDA的转变压力略有降低。有趣的是,HDA中的HB比LDA中的更长且线性更差,考虑到HDA的密度比LDA约高25%,这是违反直觉的。总体而言,我们的结果表明,虽然经典计算机模拟提供了冰和玻璃态水正确的定性现象学,但NQEs对于定量描述是必要的。

相似文献

10
Electronic cigarettes for smoking cessation.电子烟戒烟。
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD010216. doi: 10.1002/14651858.CD010216.pub7.

本文引用的文献

4
Nuclear Quantum Effects on the Electronic Structure of Water and Ice.核量子效应在水和冰的电子结构上的影响。
J Phys Chem Lett. 2024 Jul 4;15(26):6818-6825. doi: 10.1021/acs.jpclett.4c01315. Epub 2024 Jun 25.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验