The Hartree Centre, STFC Daresbury Laboratory, Warrington, WA4 4AD, United Kingdom.
Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom.
J Phys Chem B. 2023 Apr 27;127(16):3711-3727. doi: 10.1021/acs.jpcb.2c08232. Epub 2023 Apr 12.
We explore the prediction of surfactant phase behavior using state-of-the-art machine learning methods, using a data set for twenty-three nonionic surfactants. Most machine learning classifiers we tested are capable of filling in missing data in a partially complete data set. However, strong data bias and a lack of chemical space information generally lead to poorer results for entire phase diagram prediction. Although some machine learning classifiers perform better than others, these observations are largely robust to the particular choice of algorithm. Finally, we explore how phase diagram prediction can be improved by the inclusion of observations from state points sampled by an analogy to commonly used experimental protocols. Our results indicate what factors should be considered when preparing for machine learning prediction of surfactant phase behavior in future studies.
我们使用最先进的机器学习方法探索了表面活性剂相行为的预测,使用了包含二十三种非离子表面活性剂的数据集。我们测试的大多数机器学习分类器都能够在部分完整的数据集中填补缺失的数据。然而,强烈的数据偏差和缺乏化学空间信息通常会导致整个相图预测的结果较差。虽然一些机器学习分类器的性能优于其他分类器,但这些观察结果在很大程度上不受算法选择的影响。最后,我们探讨了通过纳入类似常用实验方案中采样的状态点的观察结果,如何改善相图预测。我们的结果表明,在未来的研究中,准备用机器学习预测表面活性剂相行为时应考虑哪些因素。