Suppr超能文献

深度学习在抗生素发现中的应用。

A Deep Learning Approach to Antibiotic Discovery.

机构信息

Department of Biological Engineering, Synthetic Biology Center, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Machine Learning for Pharmaceutical Discovery and Synthesis Consortium, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Machine Learning for Pharmaceutical Discovery and Synthesis Consortium, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Cell. 2020 Feb 20;180(4):688-702.e13. doi: 10.1016/j.cell.2020.01.021.

Abstract

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.

摘要

由于抗生素耐药菌的迅速出现,人们越来越需要发现新的抗生素。为了应对这一挑战,我们训练了一个能够预测具有抗菌活性的分子的深度神经网络。我们对多个化学文库进行了预测,发现了一种来自 Drug Repurposing Hub 的分子——halicin,它在结构上与传统抗生素不同,对包括结核分枝杆菌和碳青霉烯类耐药肠杆菌科在内的广泛进化谱系的病原体具有杀菌活性。Halicin 还能有效治疗艰难梭菌和泛耐药鲍曼不动杆菌感染的小鼠模型。此外,从 ZINC15 数据库中经过 1 亿多个分子的经验测试的离散的 23 个预测中,我们的模型确定了 8 种结构上与已知抗生素不同的抗菌化合物。这项工作突出了深度学习方法的实用性,通过发现结构独特的抗菌分子来扩大我们的抗生素库。

相似文献

1
A Deep Learning Approach to Antibiotic Discovery.深度学习在抗生素发现中的应用。
Cell. 2020 Feb 20;180(4):688-702.e13. doi: 10.1016/j.cell.2020.01.021.
4
A brief guide to machine learning for antibiotic discovery.抗生素发现的机器学习简介
Curr Opin Microbiol. 2022 Oct;69:102190. doi: 10.1016/j.mib.2022.102190. Epub 2022 Aug 10.

引用本文的文献

本文引用的文献

1
Analyzing Learned Molecular Representations for Property Prediction.分析用于性质预测的学习分子表示。
J Chem Inf Model. 2019 Aug 26;59(8):3370-3388. doi: 10.1021/acs.jcim.9b00237. Epub 2019 Aug 13.
2
Bacterial Metabolism and Antibiotic Efficacy.细菌代谢与抗生素疗效。
Cell Metab. 2019 Aug 6;30(2):251-259. doi: 10.1016/j.cmet.2019.06.009. Epub 2019 Jul 3.
4
Definitions and guidelines for research on antibiotic persistence.抗生素持久性研究的定义和指南。
Nat Rev Microbiol. 2019 Jul;17(7):441-448. doi: 10.1038/s41579-019-0196-3.
7
Using Machine Learning To Predict Suitable Conditions for Organic Reactions.使用机器学习预测有机反应的合适条件。
ACS Cent Sci. 2018 Nov 28;4(11):1465-1476. doi: 10.1021/acscentsci.8b00357. Epub 2018 Nov 16.
9
Next-Generation Machine Learning for Biological Networks.下一代生物网络机器学习。
Cell. 2018 Jun 14;173(7):1581-1592. doi: 10.1016/j.cell.2018.05.015. Epub 2018 Jun 7.
10
MoleculeNet: a benchmark for molecular machine learning.分子网络:分子机器学习的一个基准
Chem Sci. 2017 Oct 31;9(2):513-530. doi: 10.1039/c7sc02664a. eCollection 2018 Jan 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验