Department of Biological Engineering, Synthetic Biology Center, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Machine Learning for Pharmaceutical Discovery and Synthesis Consortium, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Machine Learning for Pharmaceutical Discovery and Synthesis Consortium, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Cell. 2020 Feb 20;180(4):688-702.e13. doi: 10.1016/j.cell.2020.01.021.
Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.
由于抗生素耐药菌的迅速出现,人们越来越需要发现新的抗生素。为了应对这一挑战,我们训练了一个能够预测具有抗菌活性的分子的深度神经网络。我们对多个化学文库进行了预测,发现了一种来自 Drug Repurposing Hub 的分子——halicin,它在结构上与传统抗生素不同,对包括结核分枝杆菌和碳青霉烯类耐药肠杆菌科在内的广泛进化谱系的病原体具有杀菌活性。Halicin 还能有效治疗艰难梭菌和泛耐药鲍曼不动杆菌感染的小鼠模型。此外,从 ZINC15 数据库中经过 1 亿多个分子的经验测试的离散的 23 个预测中,我们的模型确定了 8 种结构上与已知抗生素不同的抗菌化合物。这项工作突出了深度学习方法的实用性,通过发现结构独特的抗菌分子来扩大我们的抗生素库。