Suppr超能文献

柔性电子学的新兴趋势:将机器智能与柔性声学/振动传感器相结合。

Emerging Trends in Soft Electronics: Integrating Machine Intelligence with Soft Acoustic/Vibration Sensors.

作者信息

Lee Jeng-Hun, Cho Kang Hyuk, Cho Kilwon

机构信息

Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea.

出版信息

Adv Mater. 2023 Aug;35(32):e2209673. doi: 10.1002/adma.202209673. Epub 2023 Jun 28.

Abstract

In the last decade, soft acoustic/vibration sensors have gained tremendous research interest due to their unique ability to detect broadband acoustic/vibration stimuli, potentializing futuristic applications including voice biometrics, voice-controlled human-machine-interfaces, electronic skin, and skin-mountable healthcare devices. Importantly, to benefit most from these sensors, it is inevitable to use machine learning (ML) to process their output signals; with ML, a more accurate and efficient interpretation of original data is possible. This paper is dedicated to offering an overview of recent advances empowering the development of soft acoustic/vibration sensors and their signal processing using ML. First, the key performance parameters of the sensors are discussed. Second, popular transduction mechanisms for the sensors are addressed, followed by an in-depth overview of each type, covering materials used, structural designs, and sensing performances. Third, potential applications of the sensors are elaborated and fourth, a thorough discussion on ML is conducted, exploring different types of ML, specific ML algorithms suitable for processing acoustic/vibration signals, and current trends in ML-assisted applications. Finally, the challenges and potential opportunities in soft acoustic/vibration sensor and ML research are revealed to offer new insights into future prospects in these fields.

摘要

在过去十年中,柔软的声学/振动传感器因其独特的检测宽带声学/振动刺激的能力而引起了极大的研究兴趣,这为包括语音生物识别、语音控制人机界面、电子皮肤和可穿戴在皮肤上的医疗设备等未来应用带来了潜力。重要的是,为了从这些传感器中获得最大益处,不可避免地要使用机器学习(ML)来处理其输出信号;借助机器学习,可以对原始数据进行更准确、高效的解读。本文致力于概述最近在推动柔软声学/振动传感器发展及其使用机器学习进行信号处理方面取得的进展。首先,讨论了传感器的关键性能参数。其次,阐述了传感器常用的转换机制,随后对每种类型进行了深入概述,包括所用材料、结构设计和传感性能。第三,详细说明了传感器的潜在应用,第四,对机器学习进行了全面讨论,探讨了不同类型的机器学习、适用于处理声学/振动信号的特定机器学习算法以及机器学习辅助应用的当前趋势。最后,揭示了柔软声学/振动传感器和机器学习研究中的挑战与潜在机遇,为这些领域的未来前景提供新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验