Suppr超能文献

光学相干断层扫描结合卷积神经网络可用于鉴别离体肝内胆管细胞癌和肝实质。

Optical coherence tomography combined with convolutional neural networks can differentiate between intrahepatic cholangiocarcinoma and liver parenchyma ex vivo.

机构信息

Department of General, Visceral and Transplantation Surgery, University Hospital RWTH Aachen, Aachen, Germany.

Department of Production Metrology, Fraunhofer Institute for Production Technology IPT, Aachen, Germany.

出版信息

J Cancer Res Clin Oncol. 2023 Aug;149(10):7877-7885. doi: 10.1007/s00432-023-04742-x. Epub 2023 Apr 12.

Abstract

PURPOSE

Surgical resection with complete tumor excision (R0) provides the best chance of long-term survival for patients with intrahepatic cholangiocarcinoma (iCCA). A non-invasive imaging technology, which could provide quick intraoperative assessment of resection margins, as an adjunct to histological examination, is optical coherence tomography (OCT). In this study, we investigated the ability of OCT combined with convolutional neural networks (CNN), to differentiate iCCA from normal liver parenchyma ex vivo.

METHODS

Consecutive adult patients undergoing elective liver resections for iCCA between June 2020 and April 2021 (n = 11) were included in this study. Areas of interest from resection specimens were scanned ex vivo, before formalin fixation, using a table-top OCT device at 1310 nm wavelength. Scanned areas were marked and histologically examined, providing a diagnosis for each scan. An Xception CNN was trained, validated, and tested in matching OCT scans to their corresponding histological diagnoses, through a 5 × 5 stratified cross-validation process.

RESULTS

Twenty-four three-dimensional scans (corresponding to approx. 85,603 individual) from ten patients were included in the analysis. In 5 × 5 cross-validation, the model achieved a mean F1-score, sensitivity, and specificity of 0.94, 0.94, and 0.93, respectively.

CONCLUSION

Optical coherence tomography combined with CNN can differentiate iCCA from liver parenchyma ex vivo. Further studies are necessary to expand on these results and lead to innovative in vivo OCT applications, such as intraoperative or endoscopic scanning.

摘要

目的

对于肝内胆管癌(iCCA)患者,通过完全肿瘤切除(R0)进行手术切除是获得长期生存的最佳机会。光学相干断层扫描(OCT)是一种非侵入性成像技术,可以在组织学检查的基础上提供快速的术中评估切除边缘的能力。在这项研究中,我们研究了 OCT 与卷积神经网络(CNN)相结合,以区分离体的 iCCA 与正常肝实质的能力。

方法

本研究纳入了 2020 年 6 月至 2021 年 4 月期间因 iCCA 接受择期肝切除术的连续成年患者(n=11)。在正式固定之前,使用桌面式 1310nm 波长 OCT 设备对切除标本的感兴趣区域进行离体扫描。扫描区域被标记并进行组织学检查,为每个扫描提供诊断。通过 5×5 分层交叉验证过程,对 Xception CNN 进行了训练、验证和测试,以匹配 OCT 扫描与其相应的组织学诊断。

结果

纳入了来自十个患者的 24 个三维扫描(对应于约 85603 个个体)进行分析。在 5×5 交叉验证中,该模型的平均 F1 评分、敏感性和特异性分别为 0.94、0.94 和 0.93。

结论

OCT 与 CNN 相结合可以区分离体的 iCCA 与肝实质。需要进一步的研究来扩展这些结果,并推动创新的体内 OCT 应用,如术中或内镜扫描。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/874b/11797505/6e2ddb537c85/432_2023_4742_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验