文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种利用乘法长短期记忆网络嵌入特征识别鲜味肽序列的机器学习方法。

A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features.

作者信息

Jiang Jici, Li Jiayu, Li Junxian, Pei Hongdi, Li Mingxin, Zou Quan, Lv Zhibin

机构信息

College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

College of Life Science, Sichuan University, Chengdu 610065, China.

出版信息

Foods. 2023 Apr 2;12(7):1498. doi: 10.3390/foods12071498.


DOI:10.3390/foods12071498
PMID:37048319
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10094688/
Abstract

Umami peptides enhance the umami taste of food and have good food processing properties, nutritional value, and numerous potential applications. Wet testing for the identification of umami peptides is a time-consuming and expensive process. Here, we report the iUmami-DRLF that uses a logistic regression (LR) method solely based on the deep learning pre-trained neural network feature extraction method, unified representation (UniRep based on multiplicative LSTM), for feature extraction from the peptide sequences. The findings demonstrate that deep learning representation learning significantly enhanced the capability of models in identifying umami peptides and predictive precision solely based on peptide sequence information. The newly validated taste sequences were also used to test the iUmami-DRLF and other predictors, and the result indicates that the iUmami-DRLF has better robustness and accuracy and remains valid at higher probability thresholds. The iUmami-DRLF method can aid further studies on enhancing the umami flavor of food for satisfying the need for an umami-flavored diet.

摘要

鲜味肽可增强食物的鲜味,具有良好的食品加工特性、营养价值和众多潜在应用。用于鉴定鲜味肽的湿实验是一个耗时且昂贵的过程。在此,我们报告了iUmami-DRLF,它使用仅基于深度学习预训练神经网络特征提取方法(基于乘法长短期记忆网络的统一表示,即UniRep)的逻辑回归(LR)方法,从肽序列中提取特征。研究结果表明,深度学习表示学习显著增强了模型仅基于肽序列信息识别鲜味肽的能力和预测精度。新验证的味觉序列也用于测试iUmami-DRLF和其他预测器,结果表明iUmami-DRLF具有更好的稳健性和准确性,并且在更高的概率阈值下仍然有效。iUmami-DRLF方法有助于进一步研究增强食物的鲜味,以满足对鲜味饮食的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/00facf768c5e/foods-12-01498-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/29fe78c36311/foods-12-01498-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/09638b219279/foods-12-01498-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/4cdf0d55e098/foods-12-01498-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/92e2ae7229e3/foods-12-01498-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/00facf768c5e/foods-12-01498-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/29fe78c36311/foods-12-01498-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/09638b219279/foods-12-01498-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/4cdf0d55e098/foods-12-01498-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/92e2ae7229e3/foods-12-01498-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99b5/10094688/00facf768c5e/foods-12-01498-g005.jpg

相似文献

[1]
A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features.

Foods. 2023-4-2

[2]
iUmami-SCM: A Novel Sequence-Based Predictor for Prediction and Analysis of Umami Peptides Using a Scoring Card Method with Propensity Scores of Dipeptides.

J Chem Inf Model. 2020-12-28

[3]
Identify Bitter Peptides by Using Deep Representation Learning Features.

Int J Mol Sci. 2022-7-17

[4]
IUP-BERT: Identification of Umami Peptides Based on BERT Features.

Foods. 2022-11-21

[5]
prPred-DRLF: Plant R protein predictor using deep representation learning features.

Proteomics. 2022-1

[6]
Anticancer peptides prediction with deep representation learning features.

Brief Bioinform. 2021-9-2

[7]
UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning.

Int J Mol Sci. 2021-12-4

[8]
A TastePeptides-Meta system including an umami/bitter classification model Umami_YYDS, a TastePeptidesDB database and an open-source package Auto_Taste_ML.

Food Chem. 2023-3-30

[9]
Identification of plant vacuole proteins by exploiting deep representation learning features.

Comput Struct Biotechnol J. 2022-6-8

[10]
Umami peptides screened based on peptidomics and virtual screening from Ruditapes philippinarum and Mactra veneriformis clams.

Food Chem. 2022-11-15

引用本文的文献

[1]
In Silico Discovery and Sensory Validation of Umami Peptides in Fermented Sausages: A Study Integrating Deep Learning and Molecular Modeling.

Foods. 2025-7-9

[2]
AOPxSVM: A Support Vector Machine for Identifying Antioxidant Peptides Using a Block Substitution Matrix and Amino Acid Composition, Transformation, and Distribution Embeddings.

Foods. 2025-6-6

[3]
FEOpti-ACVP: identification of novel anti-coronavirus peptide sequences based on feature engineering and optimization.

Brief Bioinform. 2024-1-22

本文引用的文献

[1]
PDA-Pred: Predicting the binding affinity of protein-DNA complexes using machine learning techniques and structural features.

Methods. 2023-5

[2]
Potent antibiotic design via guided search from antibacterial activity evaluations.

Bioinformatics. 2023-2-3

[3]
Identification of umami peptides based on virtual screening and molecular docking from Atlantic cod ().

Food Funct. 2023-2-6

[4]
IUP-BERT: Identification of Umami Peptides Based on BERT Features.

Foods. 2022-11-21

[5]
Rapid screening based on machine learning and molecular docking of umami peptides from porcine bone.

J Sci Food Agric. 2023-6

[6]
Adaptive Margin Aware Complement-Cross Entropy Loss for Improving Class Imbalance in Multi-View Sleep Staging Based on EEG Signals.

IEEE Trans Neural Syst Rehabil Eng. 2022

[7]
WMSA: a novel method for multiple sequence alignment of DNA sequences.

Bioinformatics. 2022-11-15

[8]
Generalization in quantum machine learning from few training data.

Nat Commun. 2022-8-22

[9]
Identification of novel umami peptides from Boletus edulis and its mechanism via sensory analysis and molecular simulation approaches.

Food Chem. 2023-1-1

[10]
Identify Bitter Peptides by Using Deep Representation Learning Features.

Int J Mol Sci. 2022-7-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索