文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FEOpti-ACVP:基于特征工程和优化的新型抗冠状病毒肽序列的鉴定。

FEOpti-ACVP: identification of novel anti-coronavirus peptide sequences based on feature engineering and optimization.

机构信息

College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

College of Life Science, Sichuan University, Chengdu 610065, China.

出版信息

Brief Bioinform. 2024 Jan 22;25(2). doi: 10.1093/bib/bbae037.


DOI:10.1093/bib/bbae037
PMID:38366802
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10939380/
Abstract

Anti-coronavirus peptides (ACVPs) represent a relatively novel approach of inhibiting the adsorption and fusion of the virus with human cells. Several peptide-based inhibitors showed promise as potential therapeutic drug candidates. However, identifying such peptides in laboratory experiments is both costly and time consuming. Therefore, there is growing interest in using computational methods to predict ACVPs. Here, we describe a model for the prediction of ACVPs that is based on the combination of feature engineering (FE) optimization and deep representation learning. FEOpti-ACVP was pre-trained using two feature extraction frameworks. At the next step, several machine learning approaches were tested in to construct the final algorithm. The final version of FEOpti-ACVP outperformed existing methods used for ACVPs prediction and it has the potential to become a valuable tool in ACVP drug design. A user-friendly webserver of FEOpti-ACVP can be accessed at http://servers.aibiochem.net/soft/FEOpti-ACVP/.

摘要

抗病毒肽(ACVPs)代表了一种抑制病毒与人细胞吸附和融合的相对新颖方法。一些基于肽的抑制剂作为有前途的潜在治疗候选药物显示出了希望。然而,在实验室实验中鉴定这些肽既昂贵又耗时。因此,人们越来越感兴趣地使用计算方法来预测 ACVPs。在这里,我们描述了一种基于特征工程(FE)优化和深度表示学习相结合的 ACVP 预测模型。FEOpti-ACVP 使用两个特征提取框架进行了预训练。在下一步中,测试了几种机器学习方法来构建最终算法。最终版本的 FEOpti-ACVP 优于用于 ACVPs 预测的现有方法,它有可能成为 ACVP 药物设计中的有价值工具。FEOpti-ACVP 的用户友好型网络服务器可在 http://servers.aibiochem.net/soft/FEOpti-ACVP/ 访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca5/10939380/ff0e7d087fea/bbae037f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca5/10939380/6eb40a04db04/bbae037f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca5/10939380/bd0f48f1579e/bbae037f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca5/10939380/3d5a517d70db/bbae037f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca5/10939380/ff0e7d087fea/bbae037f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca5/10939380/6eb40a04db04/bbae037f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca5/10939380/bd0f48f1579e/bbae037f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca5/10939380/3d5a517d70db/bbae037f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bca5/10939380/ff0e7d087fea/bbae037f4.jpg

相似文献

[1]
FEOpti-ACVP: identification of novel anti-coronavirus peptide sequences based on feature engineering and optimization.

Brief Bioinform. 2024-1-22

[2]
PACVP: Prediction of Anti-Coronavirus Peptides Using a Stacking Learning Strategy With Effective Feature Representation.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[3]
ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.

Amino Acids. 2023-9

[4]
iACVP: markedly enhanced identification of anti-coronavirus peptides using a dataset-specific word2vec model.

Brief Bioinform. 2022-7-18

[5]
Identify Bitter Peptides by Using Deep Representation Learning Features.

Int J Mol Sci. 2022-7-17

[6]
Anticancer peptides prediction with deep representation learning features.

Brief Bioinform. 2021-9-2

[7]
Current Development of Data Resources and Bioinformatics Tools for Anticoronavirus Peptide.

Curr Med Chem. 2024

[8]
Comparative analysis of machine learning-based approaches for identifying therapeutic peptides targeting SARS-CoV-2.

Brief Bioinform. 2022-1-17

[9]
Pred-AHCP: Robust Feature Selection-Enabled Sequence-Specific Prediction of Anti-Hepatitis C Peptides via Machine Learning.

J Chem Inf Model. 2024-12-23

[10]
UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning.

Int J Mol Sci. 2021-12-4

引用本文的文献

[1]
GRU4ACE: Enhancing ACE inhibitory peptide prediction by integrating gated recurrent unit with multi-source feature embeddings.

Protein Sci. 2025-6

[2]
AVPpred-BWR: antiviral peptides prediction via biological words representation.

Bioinformatics. 2025-3-29

[3]
Advancing the Accuracy of Anti-MRSA Peptide Prediction Through Integrating Multi-Source Protein Language Models.

Interdiscip Sci. 2025-3-11

[4]
DeepTGIN: a novel hybrid multimodal approach using transformers and graph isomorphism networks for protein-ligand binding affinity prediction.

J Cheminform. 2024-12-29

本文引用的文献

[1]
m5U-SVM: identification of RNA 5-methyluridine modification sites based on multi-view features of physicochemical features and distributed representation.

BMC Biol. 2023-4-24

[2]
A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features.

Foods. 2023-4-2

[3]
PACVP: Prediction of Anti-Coronavirus Peptides Using a Stacking Learning Strategy With Effective Feature Representation.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[4]
PreTP-2L: identification of therapeutic peptides and their types using two-layer ensemble learning framework.

Bioinformatics. 2023-4-3

[5]
Applications of transformer-based language models in bioinformatics: a survey.

Bioinform Adv. 2023-1-11

[6]
DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis.

Nucleic Acids Res. 2023-4-24

[7]
SARS-CoV-2 Omicron subvariants exhibit distinct fusogenicity, but similar sensitivity, to pan-CoV fusion inhibitors.

Emerg Microbes Infect. 2023-12

[8]
Potent antibiotic design via guided search from antibacterial activity evaluations.

Bioinformatics. 2023-2-3

[9]
Peptide Utility (PU) search server: A new tool for peptide sequence search from multiple databases.

Heliyon. 2022-12-10

[10]
IUP-BERT: Identification of Umami Peptides Based on BERT Features.

Foods. 2022-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索