Suppr超能文献

用于内窥镜场景中密集立体匹配的稳健代价体生成方法。

Robust Cost Volume Generation Method for Dense Stereo Matching in Endoscopic Scenarios.

机构信息

Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Peng Cheng Laboratory, Shenzhen 518000, China.

出版信息

Sensors (Basel). 2023 Mar 24;23(7):3427. doi: 10.3390/s23073427.

Abstract

Stereo matching in binocular endoscopic scenarios is difficult due to the radiometric distortion caused by restricted light conditions. Traditional matching algorithms suffer from poor performance in challenging areas, while deep learning ones are limited by their generalizability and complexity. We introduce a non-deep learning cost volume generation method whose performance is close to a deep learning algorithm, but with far less computation. To deal with the radiometric distortion problem, the initial cost volume is constructed using two radiometric invariant cost metrics, the histogram of gradient angle and amplitude descriptors. Then we propose a new cross-scale propagation framework to improve the matching reliability in small homogenous regions without increasing the running time. The experimental results on the Middlebury Version 3 Benchmark show that the performance of the combination of our method and Local-Expansion, an optimization algorithm, ranks top among non-deep learning algorithms. Other quantitative experimental results on a surgical endoscopic dataset and our binocular endoscope show that the accuracy of the proposed algorithm is at the millimeter level which is comparable to the accuracy of deep learning algorithms. In addition, our method is 65 times faster than its deep learning counterpart in terms of cost volume generation.

摘要

双目内窥镜场景中的立体匹配由于光照条件受限而导致辐射度量失真,因此具有一定难度。传统的匹配算法在具有挑战性的区域表现不佳,而深度学习算法则受到通用性和复杂性的限制。我们引入了一种非深度学习的代价体生成方法,其性能接近深度学习算法,但计算量要小得多。为了解决辐射度量失真问题,我们使用两种辐射度量不变的代价度量,即梯度角直方图和幅度描述符,构建初始代价体。然后,我们提出了一种新的跨尺度传播框架,以提高在小同质地区的匹配可靠性,而不会增加运行时间。在 Middlebury Version 3 基准上的实验结果表明,我们的方法与优化算法 Local-Expansion 的组合在非深度学习算法中排名最高。在手术内窥镜数据集和我们的双目内窥镜上的其他定量实验结果表明,所提出算法的准确性达到毫米级,与深度学习算法的准确性相当。此外,在代价体生成方面,我们的方法比其深度学习对应方法快 65 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc13/10098972/fddeae01ded7/sensors-23-03427-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验