Taniai Tatsunori, Matsushita Yasuyuki, Sato Yoichi, Naemura Takeshi
IEEE Trans Pattern Anal Mach Intell. 2018 Nov;40(11):2725-2739. doi: 10.1109/TPAMI.2017.2766072. Epub 2017 Oct 24.
We present an accurate stereo matching method using local expansion moves based on graph cuts. This new move-making scheme is used to efficiently infer per-pixel 3D plane labels on a pairwise Markov random field (MRF) that effectively combines recently proposed slanted patch matching and curvature regularization terms. The local expansion moves are presented as many -expansions defined for small grid regions. The local expansion moves extend traditional expansion moves by two ways: localization and spatial propagation. By localization, we use different candidate -labels according to the locations of local -expansions. By spatial propagation, we design our local -expansions to propagate currently assigned labels for nearby regions. With this localization and spatial propagation, our method can efficiently infer MRF models with a continuous label space using randomized search. Our method has several advantages over previous approaches that are based on fusion moves or belief propagation; it produces submodular moves deriving a subproblem optimality; it helps find good, smooth, piecewise linear disparity maps; it is suitable for parallelization; it can use cost-volume filtering techniques for accelerating the matching cost computations. Even using a simple pairwise MRF, our method is shown to have best performance in the Middlebury stereo benchmark V2 and V3.
我们提出了一种基于图割的使用局部扩展移动的精确立体匹配方法。这种新的移动生成方案用于在成对马尔可夫随机场(MRF)上有效地推断每个像素的3D平面标签,该MRF有效地结合了最近提出的倾斜补丁匹配和曲率正则化项。局部扩展移动表示为针对小网格区域定义的多次扩展。局部扩展移动通过两种方式扩展传统扩展移动:局部化和空间传播。通过局部化,我们根据局部扩展的位置使用不同的候选标签。通过空间传播,我们设计局部扩展以将当前分配的标签传播到附近区域。通过这种局部化和空间传播,我们的方法可以使用随机搜索有效地推断具有连续标签空间的MRF模型。我们的方法相对于以前基于融合移动或信念传播的方法具有几个优点;它产生次模移动,从而得出子问题的最优性;它有助于找到良好、平滑、分段线性的视差图;它适合并行化;它可以使用成本体滤波技术来加速匹配成本计算。即使使用简单的成对MRF,我们的方法在Middlebury立体基准测试V2和V3中也表现出最佳性能。