Suppr超能文献

Rat lung and liver cytochrome P-450 isozymes involved in the hydroxylation of m-xylene.

作者信息

Toftgård R, Haaparanta T, Halpert J

出版信息

Toxicology. 1986 Jun;39(3):225-31. doi: 10.1016/0300-483x(86)90024-7.

Abstract

The primary metabolism of m-xylene in rat lung and liver microsomes was investigated. The ratio of side chain to aromatic hydroxylation was found to be approximately 1:1 in lung microsomes from untreated rats and in a reconstituted system containing the major cytochrome P-450 isozyme induced in rat liver by phenobarbital, cytochrome P-450-PB-B2, as compared to 8:1 in liver microsomes. Antibody inhibition studies showed the major importance of cytochrome P-450-PB-B2 for the formation of both primary m-xylene metabolites (3-methylbenzylalcohol and 2,4-dimethylphenol) in lung microsomes. Antibodies to the major cytochrome P-450 isozyme induced in rat liver by beta-naphthoflavone, P-450-BNF-B2, did not inhibit m-xylene metabolism in either liver or lung microsomes from beta-naphthoflavone treated rats although this isozyme efficiently catalyzed m-xylene hydroxylation in a reconstituted system. m-Xylene metabolism by purified P-450-BNF-B2 appeared to cause rapid inactivation of the enzyme.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验