Kowalchuk Roman, Mullikin Trey C, Breen William, Gits Hunter C, Florez Marcus, De Brian, Harmsen William S, Rose Peter Sean, Siontis Brittany L, Costello Brian A, Morris Jonathan M, Lucido John J, Olivier Kenneth R, Stish Brad, Laack Nadia N, Park Sean, Owen Dawn, Ghia Amol J, Brown Paul D, Merrell Kenneth Wing
Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States.
Department of Radiation Oncology, Duke University, Durham, NC, United States.
Front Oncol. 2023 Mar 27;13:1095170. doi: 10.3389/fonc.2023.1095170. eCollection 2023.
Though metastasis-directed therapy (MDT) has the potential to improve overall survival (OS), appropriate patient selection remains challenging. We aimed to develop a model predictive of OS to refine patient selection for clinical trials and MDT.
We assembled a multi-institutional cohort of patients treated with MDT (stereotactic body radiation therapy, radiosurgery, and whole brain radiation therapy). Candidate variables for recursive partitioning analysis were selected per prior studies: ECOG performance status, time from primary diagnosis, number of additional non-target organ systems involved (NOS), and intracranial metastases.
A database of 1,362 patients was assembled with 424 intracranial, 352 lung, and 607 spinal treatments (n=1,383). Treatments were split into training (TC) (70%, n=968) and internal validation (IVC) (30%, n=415) cohorts. The TC had median ECOG of 0 (interquartile range [IQR]: 0-1), NOS of 1 (IQR: 0-1), and OS of 18 months (IQR: 7-35). The resulting model components and weights were: ECOG = 0, 1, and > 1 (0, 1, and 2); 0, 1, and > 1 NOS (0, 1, and 2); and intracranial target (2), with lower scores indicating more favorable OS. The model demonstrated high concordance in the TC (0.72) and IVC (0.72). The score also demonstrated high concordance for each target site (spine, brain, and lung).
This pre-treatment decision tool represents a unifying model for both intracranial and extracranial disease and identifies patients with the longest survival after MDT who may benefit most from aggressive local therapy. Carefully selected patients may benefit from MDT even in the presence of intracranial disease, and this model may help guide patient selection for MDT.
尽管转移导向治疗(MDT)有提高总生存期(OS)的潜力,但合适的患者选择仍然具有挑战性。我们旨在开发一种预测OS的模型,以优化临床试验和MDT的患者选择。
我们组建了一个接受MDT(立体定向体部放射治疗、放射外科和全脑放射治疗)的多机构患者队列。根据先前的研究选择用于递归划分分析的候选变量:东部肿瘤协作组(ECOG)体能状态、从初次诊断开始的时间、涉及的其他非靶器官系统数量(NOS)和颅内转移灶。
建立了一个包含1362例患者的数据库,其中有424例颅内治疗、352例肺部治疗和607例脊柱治疗(n = 1383)。治疗被分为训练组(TC)(70%,n = 968)和内部验证组(IVC)(30%,n = 415)。TC组的ECOG中位数为0(四分位间距[IQR]:0 - 1),NOS为1(IQR:0 - 1),OS为18个月(IQR:7 - 35)。得到的模型组成部分和权重为:ECOG = 0、1和>1(分别为0、1和2);0、1和>1个NOS(分别为0、1和2);以及颅内靶区(2),分数越低表明OS越有利。该模型在TC组(0.72)和IVC组(0.72)中显示出高度一致性。该分数在每个靶区部位(脊柱、脑和肺)也显示出高度一致性。
这种治疗前决策工具代表了一种针对颅内和颅外疾病的统一模型,并识别出MDT后生存期最长且可能从积极局部治疗中获益最大的患者。即使存在颅内疾病,经过精心挑选的患者也可能从MDT中获益,并且该模型可能有助于指导MDT的患者选择。