Suppr超能文献

预测在不同情绪唤醒背景下的心率和皮肤电传导的实时变化。

Prediction of moment-by-moment heart rate and skin conductance changes in the context of varying emotional arousal.

机构信息

School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand.

Institute of Psychology, University of Leipzig, Leipzig, Germany.

出版信息

Psychophysiology. 2023 Sep;60(9):e14303. doi: 10.1111/psyp.14303. Epub 2023 Apr 13.

Abstract

Autonomic nervous system (ANS) responses such as heart rate (HR) and galvanic skin responses (GSR) have been linked with cerebral activity in the context of emotion. Although much work has focused on the summative effect of emotions on ANS responses, their interaction in a continuously changing context is less clear. Here, we used a multimodal data set of human affective states, which includes electroencephalogram (EEG) and peripheral physiological signals of participants' moment-by-moment reactions to emotional provoking video clips and modeled HR and GSR changes using machine learning techniques, specifically, long short-term memory (LSTM), decision tree (DT), and linear regression (LR). We found that LSTM achieved a significantly lower error rate compared with DT and LR due to its inherent ability to handle sequential data. Importantly, the prediction error was significantly reduced for DT and LR when used together with particle swarm optimization to select relevant/important features for these algorithms. Unlike summative analysis, and contrary to expectations, we found a significantly lower error rate when the prediction was made across different participants than within a participant. Moreover, the predictive selected features suggest that the patterns predictive of HR and GSR were substantially different across electrode sites and frequency bands. Overall, these results indicate that specific patterns of cerebral activity track autonomic body responses. Although individual cerebral differences are important, they might not be the only factors influencing the moment-by-moment changes in ANS responses.

摘要

自主神经系统(ANS)反应,如心率(HR)和皮肤电反应(GSR),与情绪背景下的大脑活动有关。尽管许多研究都集中在情绪对 ANS 反应的综合影响上,但它们在不断变化的环境中的相互作用还不太清楚。在这里,我们使用了一个包含人类情感状态的多模态数据集,该数据集包括参与者对情绪刺激视频片段的即时反应的脑电图(EEG)和外周生理信号,并使用机器学习技术,特别是长短期记忆(LSTM)、决策树(DT)和线性回归(LR),对 HR 和 GSR 的变化进行建模。我们发现,由于 LSTM 具有处理顺序数据的固有能力,因此与 DT 和 LR 相比,它的错误率显著降低。重要的是,当 DT 和 LR 与粒子群优化一起使用以选择这些算法的相关/重要特征时,预测误差显著降低。与综合分析不同,与预期相反,我们发现当在不同参与者之间进行预测时,错误率显著降低,而在一个参与者内进行预测时,错误率较高。此外,预测选择的特征表明,在 HR 和 GSR 具有预测性的模式在电极位置和频带之间存在显著差异。总的来说,这些结果表明,大脑活动的特定模式可以跟踪自主身体反应。尽管个体大脑差异很重要,但它们可能不是影响 ANS 反应随时间变化的唯一因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验