Suppr超能文献

基于代谢组学的相互作用研究发现天然产物混合物中的协同增效成分。

Interaction Metabolomics to Discover Synergists in Natural Product Mixtures.

机构信息

Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States.

Department of Chemistry, Simon Fraser University, Burnaby V5A 156, BC, Canada.

出版信息

J Nat Prod. 2023 Apr 28;86(4):655-671. doi: 10.1021/acs.jnatprod.2c00518. Epub 2023 Apr 13.

Abstract

Mass spectrometry metabolomics has become increasingly popular as an integral aspect of studies to identify active compounds from natural product mixtures. Classical metabolomics data analysis approaches do not consider the possibility that interactions (such as synergy) could occur between mixture components. With this study, we developed "interaction metabolomics" to overcome this limitation. The innovation of interaction metabolomics is the inclusion of compound interaction terms (CITs), which are calculated as the product of the intensities of each pair of features (detected ions) in the data matrix. Herein, we tested the utility of interaction metabolomics by spiking known concentrations of an antimicrobial compound (berberine) and a synergist (piperine) into a set of inactive matrices. We measured the antimicrobial activity for each of the resulting mixtures against and analyzed the mixtures with liquid chromatography coupled to high-resolution mass spectrometry. When the data set was processed without CITs (classical metabolomics), statistical analysis yielded a pattern of false positives. However, interaction metabolomics correctly identified berberine and piperine as the compounds responsible for the synergistic activity. To further validate the interaction metabolomics approach, we prepared mixtures from extracts of goldenseal () and habañero pepper () and correctly correlated synergistic activity of these mixtures to the combined action of berberine and several capsaicinoids. Our results demonstrate the utility of a conceptually new approach for identifying synergists in mixtures that may be useful for applications in natural products research and other research areas that require comprehensive mixture analysis.

摘要

基于质谱的代谢组学已成为从天然产物混合物中鉴定活性化合物的重要研究手段之一。传统的代谢组学数据分析方法并未考虑到混合物成分之间可能存在相互作用(如协同作用)的可能性。本研究中,我们开发了“相互作用代谢组学”以克服这一局限性。相互作用代谢组学的创新之处在于包含了化合物相互作用项(CITs),它是通过数据矩阵中每个特征(检测离子)对强度的乘积计算得出的。在此,我们通过向一组无活性基质中加入已知浓度的抗菌化合物(小檗碱)和协同剂(胡椒碱)来测试相互作用代谢组学的实用性。我们测量了每种混合物对的抗菌活性,并通过液相色谱-高分辨率质谱联用对混合物进行了分析。当未使用 CITs(经典代谢组学)处理数据集时,统计分析产生了假阳性的模式。然而,相互作用代谢组学正确地将小檗碱和胡椒碱鉴定为协同活性的化合物。为了进一步验证相互作用代谢组学方法的有效性,我们制备了来自黄连和哈瓦那辣椒提取物的混合物,并正确地将这些混合物的协同活性与小檗碱和几种辣椒素的联合作用相关联。我们的结果表明,这种识别混合物中协同剂的新概念方法具有实用性,可用于天然产物研究和其他需要全面混合物分析的研究领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e1e/10152448/a56b9cd43934/np2c00518_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验