Molecular Signaling Lab, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland; BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, ArvoYlpönkatu 34, 33520 Tampere, Finland; Science Center, Tampere University Hospital, ArvoYlpönkatu 34, 33520 Tampere, Finland.
BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, ArvoYlpönkatu 34, 33520 Tampere, Finland; Science Center, Tampere University Hospital, ArvoYlpönkatu 34, 33520 Tampere, Finland.
Biomed Pharmacother. 2023 Jun;162:114678. doi: 10.1016/j.biopha.2023.114678. Epub 2023 Apr 11.
Guanine nucleotide binding protein (G protein) coupled receptor 17 (GPR17) plays crucial role in Glioblastoma multiforme (GBM) cell signaling and is primarily associated with reactive oxidative species (ROS) production and cell death. However, the underlying mechanisms by which GPR17 regulates ROS level and mitochondrial electron transport chain (ETC) complexes are still unknown. Here, we investigate the novel link between the GPR17 receptor and ETC complex I and III in regulating level of intracellular ROS (ROSi) in GBM using pharmacological inhibitors and gene expression profiling. Incubation of 1321N1 GBM cells with ETC I inhibitor and GPR17 agonist decreased the ROS level, while treatment with GPR17 antagonist increased the ROS level. Also, inhibition of ETC III and activation of GPR17 increased the ROS level whereas opposite function was observed with antagonist interaction. The similar functional role was also observed in multiple GBM cells, LN229 and SNB19, where ROS level increased in the presence of Complex III inhibitor. The level of ROS varies in Complex I inhibitor and GPR17 antagonist treatment conditions suggesting that ETC I function differs depending on the GBM cell line. RNAseq analysis revealed that ∼ 500 genes were commonly expressed in both SNB19 and LN229, in which 25 genes are involved in ROS pathway. Furthermore, 33 dysregulated genes were observed to be involved in mitochondria function and 36 genes of complex I-V involved in ROS pathway. Further analysis revealed that induction of GPR17 leads to loss of function of NADH dehydrogenase genes involved in ETC I, while cytochrome b and Ubiquinol Cytochrome c Reductase family genes in ETC III. Overall, our findings suggest that mitochondrial ETC III bypass ETC I to increase ROS in GPR17 signaling activation in GBM and could provide new opportunities for developing targeted therapy for GBM.
鸟嘌呤核苷酸结合蛋白(G 蛋白)偶联受体 17(GPR17)在多形性胶质母细胞瘤(GBM)细胞信号中发挥着关键作用,主要与活性氧(ROS)的产生和细胞死亡有关。然而,GPR17 调节 ROS 水平和线粒体电子传递链(ETC)复合物的潜在机制尚不清楚。在这里,我们使用药理学抑制剂和基因表达谱研究了 GPR17 受体与 ETC 复合物 I 和 III 之间在调节 GBM 细胞内 ROS(ROSi)水平方面的新联系。用 ETC I 抑制剂和 GPR17 激动剂孵育 1321N1 GBM 细胞可降低 ROS 水平,而用 GPR17 拮抗剂处理则可增加 ROS 水平。此外,ETC III 的抑制和 GPR17 的激活增加了 ROS 水平,而拮抗剂相互作用则观察到相反的功能。在多种 GBM 细胞,LN229 和 SNB19 中也观察到类似的功能作用,在存在复合物 III 抑制剂的情况下,ROS 水平增加。在 ETC I 抑制剂和 GPR17 拮抗剂处理条件下,ROS 水平变化表明 ETC I 的功能因 GBM 细胞系而异。RNAseq 分析显示,SNB19 和 LN229 中共同表达的基因约有 500 个,其中 25 个基因参与 ROS 途径。此外,还观察到 33 个失调基因参与线粒体功能,36 个基因参与 ETC I-V 的 ROS 途径。进一步分析表明,GPR17 的诱导导致 ETC I 中 NADH 脱氢酶基因的功能丧失,而 ETC III 中的细胞色素 b 和泛醌细胞色素 c 还原酶家族基因。总的来说,我们的研究结果表明,在 GBM 中,GPR17 信号激活导致 ETC I 中的 NADH 脱氢酶基因功能丧失,而 ETC III 中的细胞色素 b 和泛醌细胞色素 c 还原酶家族基因导致线粒体 ETC III 绕过 ETC I 增加 ROS,这为开发针对 GBM 的靶向治疗提供了新的机会。