Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
Université de Lorraine, CNRS, CRPG, F-54000 Nancy, France.
Sci Adv. 2023 Apr 14;9(15):eadg2566. doi: 10.1126/sciadv.adg2566.
Mantle-derived noble gases in volcanic gases are powerful tracers of terrestrial volatile evolution, as they contain mixtures of both primordial (from Earth's accretion) and secondary (e.g., radiogenic) isotope signals that characterize the composition of deep Earth. However, volcanic gases emitted through subaerial hydrothermal systems also contain contributions from shallow reservoirs (groundwater, crust, atmosphere). Deconvolving deep and shallow source signals is critical for robust interpretations of mantle-derived signals. Here, we use a novel dynamic mass spectrometry technique to measure argon, krypton, and xenon isotopes in volcanic gas with ultrahigh precision. Data from Iceland, Germany, United States (Yellowstone, Salton Sea), Costa Rica, and Chile show that subsurface isotope fractionation within hydrothermal systems is a globally pervasive and previously unrecognized process causing substantial nonradiogenic Ar-Kr-Xe isotope variations. Quantitatively accounting for this process is vital for accurately interpreting mantle-derived volatile (e.g., noble gas and nitrogen) signals, with profound implications for our understanding of terrestrial volatile evolution.
火山气体中的幔源稀有气体是地球挥发性演化的有力示踪剂,因为它们包含了原始(来自地球的吸积)和次生(例如放射性成因)同位素信号的混合物,这些信号特征化了深部地球的组成。然而,通过陆上热液系统排放的火山气体也包含了浅层储层(地下水、地壳、大气)的贡献。解析深部和浅层源信号对于稳健解释幔源信号至关重要。在这里,我们使用一种新颖的动态质谱技术,以超高精度测量火山气体中的氩、氪和氙同位素。来自冰岛、德国、美国(黄石、索尔顿海)、哥斯达黎加和智利的数据表明,热液系统内部的地下同位素分馏是一种普遍存在且以前未被认识到的过程,导致大量非放射性的 Ar-Kr-Xe 同位素变化。定量考虑这一过程对于准确解释幔源挥发物(例如,稀有气体和氮)信号至关重要,这对我们理解地球挥发性演化有着深远的影响。