Opt Lett. 2023 Apr 15;48(8):2194-2197. doi: 10.1364/OL.487133.
There are various performance advantages when using temporal phase-based data encoding and coherent detection with a local oscillator (LO) in free-space optical (FSO) links. However, atmospheric turbulence can cause power coupling from the Gaussian mode of the data beam to higher-order modes, resulting in significantly degraded mixing efficiency between the data beam and a Gaussian LO. Photorefractive crystal-based self-pumped phase conjugation has been previously demonstrated to "automatically" mitigate turbulence with limited-rate free-space-coupled data modulation (e.g., <1 Mbit/s). Here, we demonstrate automatic turbulence mitigation in a 2-Gbit/s quadrature-phase-shift-keying (QPSK) coherent FSO link using degenerate four-wave-mixing (DFWM)-based phase conjugation and fiber-coupled data modulation. Specifically, we counter-propagate a Gaussian probe from the receiver (Rx) to the transmitter (Tx) through turbulence. At the Tx, we generate a Gaussian beam carrying QPSK data by a fiber-coupled phase modulator. Subsequently, we create a phase conjugate data beam through a photorefractive crystal-based DFWM involving the Gaussian data beam, the turbulence-distorted probe, and a spatially filtered Gaussian copy of the probe beam. Finally, the phase conjugate beam is transmitted back to the Rx for turbulence mitigation. Compared to a coherent FSO link without mitigation, our approach shows up to ∼14-dB higher LO-data mixing efficiency and achieves error vector magnitude (EVM) performance of <16% under various turbulence realizations.
在自由空间光(FSO)链路中使用基于时间相位的数据编码和相干检测与本振(LO)时,具有各种性能优势。然而,大气湍流会导致数据光束的高斯模式与高阶模式之间发生功率耦合,从而导致数据光束与高斯 LO 之间的混合效率显著降低。先前已经证明基于光折变晶体的自泵浦相位共轭可以通过有限速率的自由空间耦合数据调制(例如,<1 Mbit/s)“自动”减轻湍流。在这里,我们使用基于简并四波混频(DFWM)的相位共轭和光纤耦合数据调制,在 2-Gbit/s 正交相移键控(QPSK)相干 FSO 链路中演示了自动湍流缓解。具体来说,我们通过湍流将高斯探测从接收器(Rx)反向传输到发射器(Tx)。在 Tx 处,我们通过光纤耦合相位调制器产生携带 QPSK 数据的高斯光束。随后,我们通过基于光折变晶体的 DFWM 创建相位共轭数据光束,该光束涉及高斯数据光束、被湍流失真的探针以及探针光束的空间滤波高斯副本。最后,将相位共轭光束传输回 Rx 以减轻湍流。与未缓解的相干 FSO 链路相比,我们的方法显示 LO-数据混合效率高达约 14dB,并且在各种湍流实现下的误差向量幅度(EVM)性能小于 16%。