文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

病理性血管生成:机制与治疗策略。

Pathological angiogenesis: mechanisms and therapeutic strategies.

机构信息

Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.

Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.

出版信息

Angiogenesis. 2023 Aug;26(3):313-347. doi: 10.1007/s10456-023-09876-7. Epub 2023 Apr 15.


DOI:10.1007/s10456-023-09876-7
PMID:37060495
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10105163/
Abstract

In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.

摘要

在多细胞生物中,血管生成是指从预先存在的血管中形成新血管的过程,是生长和发育所必需的。血管生成、发芽、内套叠、融合血管生成以及血管选择、血管拟态和淋巴管生成等不同机制是新血管形成的基础。在许多病理条件下,如癌症、动脉粥样硬化、关节炎、银屑病、子宫内膜异位症、肥胖症和 SARS-CoV-2(COVID-19),发育性血管生成过程被重现,但通常没有正常的反馈机制来调节血管形成的正常时空模式。因此,病理性血管生成为血管靶向治疗的设计带来了新的挑战和新的机遇。在这里,我们概述了最近对血管发育的深入了解,并强调了促进或抑制血管生成过程以稳定、逆转甚至停止疾病进展的新治疗策略。在我们的综述中,我们还将探讨几个平行于经典血管生成机制的附加方面(血管生成开关、缺氧、血管分泌信号、内皮细胞可塑性、血管正常化和内皮细胞失能),并推测这些过程也可以通过抗血管生成或血管靶向治疗来靶向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/ea7b79678e56/10456_2023_9876_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/c9295a9d4a41/10456_2023_9876_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/4cab451a6a8a/10456_2023_9876_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/5f9d361faaf8/10456_2023_9876_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/f185d11cc126/10456_2023_9876_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/b3acdfa846a4/10456_2023_9876_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/a7d59a4ec499/10456_2023_9876_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/fc0c539f76d0/10456_2023_9876_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/ba1ff4da9278/10456_2023_9876_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/ea7b79678e56/10456_2023_9876_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/c9295a9d4a41/10456_2023_9876_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/4cab451a6a8a/10456_2023_9876_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/5f9d361faaf8/10456_2023_9876_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/f185d11cc126/10456_2023_9876_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/b3acdfa846a4/10456_2023_9876_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/a7d59a4ec499/10456_2023_9876_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/fc0c539f76d0/10456_2023_9876_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/ba1ff4da9278/10456_2023_9876_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/10329089/ea7b79678e56/10456_2023_9876_Fig9_HTML.jpg

相似文献

[1]
Pathological angiogenesis: mechanisms and therapeutic strategies.

Angiogenesis. 2023-8

[2]
Tumour vascularization: sprouting angiogenesis and beyond.

Cancer Metastasis Rev. 2007-12

[3]
Glycosylation as new pharmacological strategies for diseases associated with excessive angiogenesis.

Pharmacol Ther. 2018-6-29

[4]
[Rationale of antiangiogenic therapy].

Magy Onkol. 2006

[5]
Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation.

Nature. 2008-7-31

[6]
Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis.

Biochim Biophys Acta. 2013-12

[7]
Targeting endothelial cell metabolism in cancerous microenvironment: a new approach for anti-angiogenic therapy.

Drug Metab Rev. 2022-11

[8]
Intussusceptive angiogenesis as a key therapeutic target for cancer therapy.

Life Sci. 2020-4-13

[9]
Exosomes in Angiogenesis and Anti-angiogenic Therapy in Cancers.

Int J Mol Sci. 2020-8-14

[10]
The emerging roles of circular RNAs in vessel co-option and vasculogenic mimicry: clinical insights for anti-angiogenic therapy in cancers.

Cancer Metastasis Rev. 2022-3

引用本文的文献

[1]
Bioprinting Vascularized Constructs for Clinical Relevance: Engineering Hydrogel Systems for Biological Maturity.

Gels. 2025-8-12

[2]
PKM2 regulates angiogenic activation via ANGPT2 in endothelial cells.

Sci Rep. 2025-8-26

[3]
Inflammatory cytokines are associated with stroke and risk factors of cerebrovascular diseases: a Mendelian randomization study.

Mamm Genome. 2025-8-22

[4]
Targeted proteomic analysis identifies ACVRL1 as a marker of cerebral edema in aneurysmal subarachnoid hemorrhage.

J Cereb Blood Flow Metab. 2025-8-20

[5]
Endothelial cell in tumor angiogenesis: Origins, mechanisms, and therapeutic implication.

Genes Dis. 2025-3-24

[6]
CD146: a promising target in respiratory diseases.

Eur Respir Rev. 2025-8-6

[7]
Regression of pathological blood vessels by inhibition of mast cell function.

Blood Vessel Thromb Hemost. 2025-1-9

[8]
Melatonin and angiogenesis potential in stem cells.

Stem Cell Res Ther. 2025-8-5

[9]
A multi-tissue human knee single-cell atlas identifies that osteoarthritis reduces regenerative tissue stem cells while increasing inflammatory pain macrophages.

Commun Biol. 2025-8-2

[10]
USP13 Suppresses Colorectal Cancer Angiogenesis by Downregulating VEGFA Expression through Inhibition of the PTEN-AKT Pathway.

Oncol Res. 2025-7-18

本文引用的文献

[1]
Origin, prospective identification, and function of circulating endothelial colony-forming cells in mice and humans.

JCI Insight. 2023-3-8

[2]
Proinflammatory activity of VEGF-targeted treatment through reversal of tumor endothelial cell anergy.

Angiogenesis. 2023-5

[3]
Cancer immunotherapies transition endothelial cells into HEVs that generate TCF1 T lymphocyte niches through a feed-forward loop.

Cancer Cell. 2022-12-12

[4]
Toward a granular molecular-anatomic map of the blood vasculature - single-cell RNA sequencing makes the leap.

Ups J Med Sci. 2022

[5]
A single-cell transcriptomic inventory of murine smooth muscle cells.

Dev Cell. 2022-10-24

[6]
Single-cell transcriptomics reveals functionally specialized vascular endothelium in brain.

Elife. 2022-10-5

[7]
Treatment-associated remodeling of the pancreatic cancer endothelium at single-cell resolution.

Front Oncol. 2022-9-16

[8]
Single cell atlas identifies lipid-processing and immunomodulatory endothelial cells in healthy and malignant breast.

Nat Commun. 2022-9-20

[9]
MicroRNA-375 repression of Kruppel-like factor 5 improves angiogenesis in diabetic critical limb ischemia.

Angiogenesis. 2023-2

[10]
The pulmonary vasculature in lethal COVID-19 and idiopathic pulmonary fibrosis at single-cell resolution.

Cardiovasc Res. 2023-3-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索