Suppr超能文献

超声化学合成纳米粒子的最佳清除剂浓度。

Optimum scavenger concentrations for sonochemical nanoparticle synthesis.

机构信息

Electrochemistry Group, Department of Materials Science and Engineering, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.

Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.

出版信息

Sci Rep. 2023 Apr 15;13(1):6183. doi: 10.1038/s41598-023-33243-7.

Abstract

Maintaining nanoparticle properties when scaling up a chemical synthesis is challenging due to the complex interplay between reducing agents and precursors. A sonochemical synthesis route does not require the addition of reducing agents as they are instead being continuously generated in-situ by ultrasonic cavitation throughout the reactor volume. To optimize the sonochemical synthesis of nanoparticles, understanding the role of radical scavengers is paramount. In this work we demonstrate that optimum scavenger concentrations exist at which the rate of Ag-nanoparticle formation is maximized. Titanyl dosimetry experiments were used in conjunction with Ag-nanoparticle formation rates to determine these optimum scavenger concentrations. It was found that more hydrophobic scavengers require lower optimum concentrations with 1-butanol < 2-propanol < ethanol < methanol < ethylene glycol. However, the optimum concentration is shifted by an order of magnitude towards higher concentrations when pyrolytic decomposition products contribute to the reduction. The reduction rate is also enhanced considerably.

摘要

由于还原剂和前体之间的复杂相互作用,在扩大化学合成规模时保持纳米颗粒的性能是具有挑战性的。超声化学合成路线不需要添加还原剂,因为它们是通过超声空化在整个反应器体积中不断原位生成的。为了优化纳米颗粒的超声化学合成,了解自由基清除剂的作用至关重要。在这项工作中,我们证明了在存在最佳清除剂浓度的情况下,银纳米颗粒的形成速率最大。钛酰剂量实验与银纳米颗粒形成速率结合使用,以确定这些最佳清除剂浓度。结果发现,疏水性更强的清除剂需要更低的最佳浓度,其中 1-丁醇 < 2-丙醇 < 乙醇 < 甲醇 < 乙二醇。然而,当热解分解产物有助于还原时,最佳浓度会向更高浓度移动一个数量级。还原速率也大大提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05b5/10105774/9f0908a5c37b/41598_2023_33243_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验