Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States.
Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.
J Am Soc Mass Spectrom. 2023 May 3;34(5):905-912. doi: 10.1021/jasms.2c00370. Epub 2023 Apr 16.
Imaging mass spectrometry (IMS) provides untargeted, highly multiplexed maps of molecular distributions in tissue. Ion images are routinely presented as heatmaps and can be overlaid onto complementary microscopy images that provide greater context. However, heatmaps use transparency blending to visualize both images, obscuring subtle quantitative differences and distribution gradients. Here, we developed a contour mapping approach that combines information from IMS ion intensity distributions with that of stained microscopy. As a case study, we applied this approach to imaging data from -infected murine kidney. In a univariate, or single molecular species, use-case of the contour map representation of IMS data, certain lipids colocalizing with regions of infection were selected using Pearson's correlation coefficient. Contour maps of these lipids overlaid with stained microscopy showed enhanced visualization of lipid distributions and spatial gradients in and around the bacterial abscess as compared to traditional heatmaps. The full IMS data set comprising hundreds of individual ion images was then grouped into a smaller subset of representative patterns using non-negative matrix factorization (NMF). Contour maps of these multivariate NMF images revealed distinct molecular profiles of the major abscesses and surrounding immune response. This contour mapping workflow also enabled a molecular visualization of the transition zone at the host-pathogen interface, providing potential clues about the spatial molecular dynamics beyond what histological staining alone provides. In summary, we developed a new IMS-based contour mapping approach to augment classical stained microscopy images, providing an enhanced and more interpretable visualization of IMS-microscopy multimodal molecular imaging data sets.
成像质谱 (IMS) 提供了组织中分子分布的非靶向、高度多重化图谱。离子图像通常以热图呈现,并可以覆盖在提供更多背景信息的互补显微镜图像上。然而,热图使用透明度混合来可视化两个图像,从而掩盖了细微的定量差异和分布梯度。在这里,我们开发了一种轮廓映射方法,将 IMS 离子强度分布的信息与染色显微镜的信息结合起来。作为一个案例研究,我们将这种方法应用于感染的鼠肾的成像数据。在 IMS 数据的轮廓图表示的单变量或单一分子物种的使用案例中,使用 Pearson 相关系数选择与感染区域共定位的某些脂质。与传统热图相比,这些脂质的轮廓图与染色显微镜叠加显示出更好地可视化脂质分布和细菌脓肿内外的空间梯度。然后,使用非负矩阵分解 (NMF) 将包含数百个单独离子图像的完整 IMS 数据集分为更小的代表性模式子集。这些多变量 NMF 图像的轮廓图揭示了主要脓肿和周围免疫反应的不同分子特征。这种轮廓映射工作流程还实现了宿主-病原体界面过渡区的分子可视化,为单独的组织学染色提供的空间分子动力学提供了潜在线索。总之,我们开发了一种新的基于 IMS 的轮廓映射方法来增强经典染色显微镜图像,为 IMS-显微镜多模态分子成像数据集提供了增强和更易于解释的可视化。