Université de Lorraine, INSERM, Centre d'Investigations Cliniques Plurithématique 1433, Inserm U1116, CHRU de Nancy and F-CRIN INI-CRCT, Nancy, France.
Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal.
Eur J Heart Fail. 2023 Aug;25(8):1284-1289. doi: 10.1002/ejhf.2859. Epub 2023 Apr 26.
An echocardiographic algorithm derived by machine learning (e'VM) characterizes pre-clinical individuals with different cardiac structure and function, biomarkers, and long-term risk of heart failure (HF). Our aim was the external validation of the e'VM algorithm and to explore whether it may identify subgroups who benefit from spironolactone.
The HOMAGE (Heart OMics in AGEing) trial enrolled participants at high risk of developing HF randomly assigned to spironolactone or placebo over 9 months. The e'VM algorithm was applied to 416 participants (mean age 74 ± 7 years, 25% women) with available echocardiographic variables (i.e. e' mean, left ventricular end-diastolic volume and mass indexed by body surface area [LVMi]). The effects of spironolactone on changes in echocardiographic and biomarker variables were assessed across e'VM phenotypes. A majority (>80%) had either a 'diastolic changes' (D), or 'diastolic changes with structural remodelling' (D/S) phenotype. The D/S phenotype had the highest LVMi, left atrial volume, E/e', natriuretic peptide and troponin levels (all p < 0.05). Spironolactone significantly reduced E/e' and B-type natriuretic peptide (BNP) levels in the D/S phenotype (p < 0.01), but not in other phenotypes (p > 0.10; p <0.05 for both). These interactions were not observed when considering guideline-recommended echocardiographic structural and functional abnormalities. The magnitude of effects of spironolactone on LVMi, left atrial volume and a type I collagen marker was numerically higher in the D/S phenotype than the D phenotype but the interaction test did not reach significance.
In the HOMAGE trial, the e'VM algorithm identified echocardiographic phenotypes with distinct responses to spironolactone as assessed by changes in E/e' and BNP.
通过机器学习(e'VM)得出的超声心动图算法可以对具有不同心脏结构和功能、生物标志物以及心力衰竭(HF)长期风险的临床前个体进行特征描述。我们的目的是对 e'VM 算法进行外部验证,并探讨其是否可以识别从螺内酯治疗中获益的亚组人群。
HOMAGE(心脏老化中的 OMICS)试验招募了 HF 高危人群,这些参与者被随机分配接受螺内酯或安慰剂治疗,为期 9 个月。该研究应用 e'VM 算法对 416 名(平均年龄 74±7 岁,25%为女性)参与者进行分析,这些参与者具有可用的超声心动图变量(即 e'均值、左心室舒张末期容积和体表面积指数化的左心室质量 [LVMi])。根据 e'VM 表型评估螺内酯对超声心动图和生物标志物变量变化的影响。大多数(>80%)参与者具有“舒张变化”(D)或“舒张变化伴结构重塑”(D/S)表型。D/S 表型具有最高的 LVMi、左心房容积、E/e'、利钠肽和肌钙蛋白水平(均 p<0.05)。螺内酯显著降低了 D/S 表型的 E/e'和 B 型利钠肽(BNP)水平(均 p<0.01),但在其他表型中无此作用(均 p>0.10;p<0.05)。当考虑指南推荐的超声心动图结构性和功能性异常时,未观察到这些交互作用。螺内酯对 LVMi、左心房容积和 I 型胶原蛋白标志物的影响程度在 D/S 表型中高于 D 表型,但交互检验未达到显著性。
在 HOMAGE 试验中,e'VM 算法确定了超声心动图表型,这些表型对螺内酯的反应不同,表现在 E/e'和 BNP 的变化上。