Zhang Yue-Jun, Zhang Han, Gupta Rangan
Business School, Hunan University, Changsha, 410082 China.
Center for Resource and Environmental Management, Hunan University, Changsha, 410082 China.
Financ Innov. 2023;9(1):75. doi: 10.1186/s40854-023-00483-5. Epub 2023 Apr 10.
Forecasting returns for the Artificial Intelligence and Robotics Index is of great significance for financial market stability, and the development of the artificial intelligence industry. To provide investors with a more reliable reference in terms of artificial intelligence index investment, this paper selects the NASDAQ CTA Artificial Intelligence and Robotics (AIRO) Index as the research target, and proposes innovative hybrid methods to forecast returns by considering its multiple structural characteristics. Specifically, this paper uses the ensemble empirical mode decomposition (EEMD) method and the modified iterative cumulative sum of squares (ICSS) algorithm to decompose the index returns and identify the structural breakpoints. Furthermore, it combines the least-square support vector machine approach with the particle swarm optimization method (PSO-LSSVM) and the generalized autoregressive conditional heteroskedasticity (GARCH) type models to construct innovative hybrid forecasting methods. On the one hand, the empirical results indicate that the AIRO index returns have complex structural characteristics, and present time-varying and nonlinear characteristics with high complexity and mutability; on the other hand, the newly proposed hybrid forecasting method (i.e., the EEMD-PSO-LSSVM-ICSS-GARCH models) which considers these complex structural characteristics, can yield the optimal forecasting performance for the AIRO index returns.
预测人工智能与机器人指数的回报对于金融市场稳定以及人工智能产业发展具有重大意义。为了在人工智能指数投资方面为投资者提供更可靠的参考,本文选取纳斯达克CTA人工智能与机器人(AIRO)指数作为研究对象,并通过考虑其多重结构特征提出创新的混合方法来预测回报。具体而言,本文使用集成经验模态分解(EEMD)方法和改进的迭代累计平方和(ICSS)算法对指数回报进行分解并识别结构断点。此外,将最小二乘支持向量机方法与粒子群优化方法(PSO-LSSVM)以及广义自回归条件异方差(GARCH)类模型相结合,构建创新的混合预测方法。一方面,实证结果表明AIRO指数回报具有复杂的结构特征,呈现出高复杂性和多变性的时变及非线性特征;另一方面,新提出的考虑这些复杂结构特征的混合预测方法(即EEMD-PSO-LSSVM-ICSS-GARCH模型)能够为AIRO指数回报产生最优预测性能。