Suppr超能文献

基于对抗学习的痴呆症检测中语音停顿的可解释性研究

TOWARDS INTERPRETABILITY OF SPEECH PAUSE IN DEMENTIA DETECTION USING ADVERSARIAL LEARNING.

作者信息

Zhu Youxiang, Tran Bang, Liang Xiaohui, Batsis John A, Roth Robert M

机构信息

Department of Computer Science, University of Massachusetts Boston, MA, USA.

School of Medicine, University of North Carolina, Chapel Hill, NC, USA.

出版信息

Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:6462-6466. doi: 10.1109/icassp43922.2022.9747006. Epub 2022 Apr 27.

Abstract

Speech pause is an effective biomarker in dementia detection. Recent deep learning models have exploited speech pauses to achieve highly accurate dementia detection, but have not exploited the interpretability of speech pauses, i.e., what and how positions and lengths of speech pauses affect the result of dementia detection. In this paper, we will study the positions and lengths of dementia-sensitive pauses using adversarial learning approaches. Specifically, we first utilize an adversarial attack approach by adding the perturbation to the speech pauses of the testing samples, aiming to reduce the confidence levels of the detection model. Then, we apply an adversarial training approach to evaluate the impact of the perturbation in training samples on the detection model. We examine the interpretability from the perspectives of model accuracy, pause context, and pause length. We found that some pauses are more sensitive to dementia than other pauses from the model's perspective, e.g., speech pauses near to the verb "is". Increasing lengths of sensitive pauses or adding sensitive pauses leads the model inference to Alzheimer's Disease (AD), while decreasing the lengths of sensitive pauses or deleting sensitive pauses leads to non-AD.

摘要

语音停顿是痴呆症检测中的一种有效生物标志物。最近的深度学习模型利用语音停顿实现了高精度的痴呆症检测,但尚未利用语音停顿的可解释性,即语音停顿的位置和时长如何以及对痴呆症检测结果有何影响。在本文中,我们将使用对抗学习方法研究对痴呆症敏感的停顿的位置和时长。具体来说,我们首先通过对测试样本的语音停顿添加扰动来利用对抗攻击方法,旨在降低检测模型的置信度。然后,我们应用对抗训练方法来评估训练样本中的扰动对检测模型的影响。我们从模型准确性、停顿上下文和停顿时长的角度研究可解释性。我们发现,从模型的角度来看,有些停顿比其他停顿对痴呆症更敏感,例如,靠近动词“is”的语音停顿。增加敏感停顿的时长或添加敏感停顿会使模型推断为阿尔茨海默病(AD),而减少敏感停顿时长或删除敏感停顿则会导致非AD。

相似文献

1
TOWARDS INTERPRETABILITY OF SPEECH PAUSE IN DEMENTIA DETECTION USING ADVERSARIAL LEARNING.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:6462-6466. doi: 10.1109/icassp43922.2022.9747006. Epub 2022 Apr 27.
3
Breaking the flow of thought: Increase of empty pauses in the connected speech of people with mild and moderate Alzheimer's disease.
J Commun Disord. 2022 May-Jun;97:106214. doi: 10.1016/j.jcomdis.2022.106214. Epub 2022 Mar 23.
4
What happens when nothing happens? An investigation of pauses as a compensatory mechanism in early Alzheimer's disease.
Neuropsychologia. 2019 Feb 18;124:133-143. doi: 10.1016/j.neuropsychologia.2018.12.018. Epub 2018 Dec 26.
5
Telltale silence: temporal speech parameters discriminate between prodromal dementia and mild Alzheimer's disease.
Clin Linguist Phon. 2021 Aug 3;35(8):727-742. doi: 10.1080/02699206.2020.1827043. Epub 2020 Sep 30.
6
Silent pauses in aphasia.
Neuropsychologia. 2018 Jun;114:41-49. doi: 10.1016/j.neuropsychologia.2018.04.006. Epub 2018 Apr 7.
8
Laws for pauses.
J Exp Psychol Learn Mem Cogn. 2022 Jan;48(1):142-158. doi: 10.1037/xlm0001103.
9
Acoustic and Language Based Deep Learning Approaches for Alzheimer's Dementia Detection From Spontaneous Speech.
Front Aging Neurosci. 2021 Feb 5;13:623607. doi: 10.3389/fnagi.2021.623607. eCollection 2021.
10
Pause Postures: The relationship between articulation and cognitive processes during pauses.
J Phon. 2020 Mar;79. doi: 10.1016/j.wocn.2019.100953. Epub 2020 Feb 21.

引用本文的文献

1
Machine Learning for Dementia Prediction: A Systematic Review and Future Research Directions.
J Med Syst. 2023 Feb 1;47(1):17. doi: 10.1007/s10916-023-01906-7.

本文引用的文献

1
WavBERT: Exploiting Semantic and Non-semantic Speech using Wav2vec and BERT for Dementia Detection.
Interspeech. 2021 Aug-Sep;2021:3790-3794. doi: 10.21437/interspeech.2021-332.
2
An Automated Approach to Examining Pausing in the Speech of People With Dementia.
Am J Alzheimers Dis Other Demen. 2020 Jan-Dec;35:1533317520939773. doi: 10.1177/1533317520939773.
3
Examining pauses in Alzheimer's discourse.
Am J Alzheimers Dis Other Demen. 2009 Apr-May;24(2):141-54. doi: 10.1177/1533317508328138. Epub 2009 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验