Suppr超能文献

机器学习在痴呆预测中的应用:系统评价及未来研究方向。

Machine Learning for Dementia Prediction: A Systematic Review and Future Research Directions.

机构信息

Aging Research Center, Karolinska Institutet, Tomtebodavagen, Stockholm, 17165, Solna, Sweden.

Department of Health, Blekinge Institute of Technology, Valhallavägen 1, Karlskrona, 37141, Blekinge, Sweden.

出版信息

J Med Syst. 2023 Feb 1;47(1):17. doi: 10.1007/s10916-023-01906-7.

Abstract

Nowadays, Artificial Intelligence (AI) and machine learning (ML) have successfully provided automated solutions to numerous real-world problems. Healthcare is one of the most important research areas for ML researchers, with the aim of developing automated disease prediction systems. One of the disease detection problems that AI and ML researchers have focused on is dementia detection using ML methods. Numerous automated diagnostic systems based on ML techniques for early prediction of dementia have been proposed in the literature. Few systematic literature reviews (SLR) have been conducted for dementia prediction based on ML techniques in the past. However, these SLR focused on a single type of data modality for the detection of dementia. Hence, the purpose of this study is to conduct a comprehensive evaluation of ML-based automated diagnostic systems considering different types of data modalities such as images, clinical-features, and voice data. We collected the research articles from 2011 to 2022 using the keywords dementia, machine learning, feature selection, data modalities, and automated diagnostic systems. The selected articles were critically analyzed and discussed. It was observed that image data driven ML models yields promising results in terms of dementia prediction compared to other data modalities, i.e., clinical feature-based data and voice data. Furthermore, this SLR highlighted the limitations of the previously proposed automated methods for dementia and presented future directions to overcome these limitations.

摘要

如今,人工智能 (AI) 和机器学习 (ML) 已经成功地为许多现实世界的问题提供了自动化解决方案。医疗保健是机器学习研究人员的一个重要研究领域,旨在开发自动化疾病预测系统。人工智能和机器学习研究人员关注的一个疾病检测问题是使用 ML 方法进行痴呆症检测。在文献中已经提出了许多基于 ML 技术的自动诊断系统,用于早期预测痴呆症。过去曾进行过几次基于 ML 技术的痴呆预测的系统性文献综述 (SLR)。然而,这些 SLR 专注于检测痴呆症的单一类型的数据模态。因此,本研究的目的是综合评估基于 ML 的自动化诊断系统,考虑不同类型的数据模态,如图像、临床特征和语音数据。我们使用关键字“痴呆症、机器学习、特征选择、数据模态和自动化诊断系统”从 2011 年到 2022 年收集研究文章。对选定的文章进行了批判性分析和讨论。结果表明,与其他数据模态(即基于临床特征的数据和语音数据)相比,基于图像数据的 ML 模型在痴呆症预测方面的结果更有前景。此外,本次 SLR 强调了先前提出的用于痴呆症的自动化方法的局限性,并提出了克服这些局限性的未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bde7/9889464/b993fe1ebdb2/10916_2023_1906_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验