School of Mathematics and Statistics, Center for Data Science, Lanzhou University, Lanzhou, P.R.China.
Biom J. 2023 Jun;65(5):e2200153. doi: 10.1002/bimj.202200153. Epub 2023 Apr 17.
Buckley-James (BJ) model is a typical semiparametric accelerated failure time model, which is closely related to the ordinary least squares method and easy to be constructed. However, traditional BJ model built on linearity assumption only captures simple linear relationships, while it has difficulty in processing nonlinear problems. To overcome this difficulty, in this paper, we develop a novel regression model for right-censored survival data within the learning framework of BJ model, basing on random survival forests (RSF), extreme learning machine (ELM), and L boosting algorithm. The proposed method, referred to as ELM-based BJ boosting model, employs RSF for covariates imputation first, then develops a new ensemble of ELMs-ELM-based boosting algorithm for regression by ensemble scheme of L boosting, and finally, uses the output function of the proposed ELM-based boosting model to replace the linear combination of covariates in BJ model. Due to fitting the logarithm of survival time with covariates by the nonparametric ELM-based boosting method instead of the least square method, the ELM-based BJ boosting model can capture both linear covariate effects and nonlinear covariate effects. In both simulation studies and real data applications, in terms of concordance index and integrated Brier sore, the proposed ELM-based BJ boosting model can outperform traditional BJ model, two kinds of BJ boosting models proposed by Wang et al., RSF, and Cox proportional hazards model.
Buckley-James(BJ)模型是一种典型的半参数加速失效时间模型,与普通最小二乘法密切相关,易于构建。然而,传统的基于线性假设的 BJ 模型仅捕捉简单的线性关系,而处理非线性问题则较为困难。为了克服这一困难,本文在 BJ 模型的学习框架内,基于随机生存森林(RSF)、极限学习机(ELM)和 L 提升算法,为右删失生存数据开发了一种新的回归模型。该方法称为基于 ELM 的 BJ 提升模型,首先使用 RSF 对协变量进行插补,然后通过 L 提升的集成方案开发一个新的 ELM 集成——基于 ELM 的提升算法,用于回归,最后,使用所提出的基于 ELM 的提升模型的输出函数来替代 BJ 模型中协变量的线性组合。由于通过基于非参数的 ELM 的提升方法拟合带有协变量的生存时间的对数,而不是使用最小二乘法,因此基于 ELM 的 BJ 提升模型可以同时捕捉线性协变量效应和非线性协变量效应。在模拟研究和真实数据应用中,在所提出的基于 ELM 的 BJ 提升模型的一致性指数和综合 Brier 得分方面,均优于传统的 BJ 模型、Wang 等人提出的两种 BJ 提升模型、RSF 和 Cox 比例风险模型。