Department of Plant & Soil Sciences, University of Delaware, 531 S. College Avenue, Townsend Hall Rm. 152, Newark, DE, 19716, USA.
School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, Cannon Lab Rm. 204, Lewes, DE, 19958, USA.
J Environ Manage. 2023 Aug 1;339:117936. doi: 10.1016/j.jenvman.2023.117936. Epub 2023 Apr 15.
Rice agriculture feeds over half the world's population, and paddy soils impact the carbon cycle through soil organic carbon (SOC) preservation and production of carbon dioxide (CO) and methane (CH), which are greenhouse gases (GHG). Rice husk is a nutrient-rich, underutilized byproduct of rice milling that is sometimes pyrolyzed or combusted. It is unresolved how the incorporation of these residues affects C dynamics in paddy soil. In this study, we sought to determine how untreated (Husk), low-temperature pyrolyzed (Biochar), and combusted (CharSil) husk amendments affect SOC levels, GHG emissions, and dissolved organic matter (DOM) chemistry. We amended Ultisol paddy mesocosms and collected SOC and GHG data for three years of rice grown under alternate wetting and drying (AWD) conditions. We also performed a greenhouse pot study that included water management treatments of nonflooded, AWD, and flooded. Husk, Biochar, and CharSil amendments and flooding generally increased SOC storage and CH emissions, while nonflooded conditions increased NO emissions and nonflooded and CharSil treatments increased CO emissions. All amendments stored ∼0.15 kg C m y more SOC than CH emissions (as CO equivalents), but the combustion of husk to produce CharSil resulted in the net release of CO which negates any SOC storage. UV-visible absorption/fluorescence spectroscopy from the pot study suggests that nonflooded treatment decreased DOM aromaticity and molecular size. Our data show that flooding and amendment of Husk and Biochar maximized C storage in the highly weathered rice paddy soil under study despite Husk increasing CH emissions. Water management affected dissolved organic matter chemistry more strongly than amendments, but this requires further investigation. Return of rice husk that is untreated or pyrolyzed at low temperature shows promise to close nutrient loops and preserve SOC in rice paddy soils.
水稻农业养活了世界上一半以上的人口,稻田土壤通过土壤有机碳(SOC)的保存和二氧化碳(CO)和甲烷(CH)的产生来影响碳循环,而 CO 和 CH 是温室气体(GHG)。稻壳是稻米加工过程中一种营养丰富但未充分利用的副产物,有时会进行热解或燃烧。目前尚不清楚这些残留物的加入如何影响稻田土壤中的 C 动态。在这项研究中,我们试图确定未经处理的稻壳(Husk)、低温热解的生物炭(Biochar)和燃烧的炭灰(CharSil)对 SOC 水平、温室气体排放和溶解有机物质(DOM)化学的影响。我们用未处理(稻壳)、低温热解(生物炭)和燃烧(炭灰)的稻壳处理了 Ultisol 稻田微宇宙,并在交替湿润和干燥(AWD)条件下种植水稻,收集了三年的 SOC 和 GHG 数据。我们还进行了温室盆栽研究,包括非淹没、AWD 和淹没的水分管理处理。稻壳、生物炭和炭灰的添加以及淹没通常会增加 SOC 的储存和 CH 的排放,而非淹没条件会增加 NO 的排放,非淹没和炭灰处理会增加 CO 的排放。所有的添加物储存的 SOC 比 CH 排放的 CO 当量多约 0.15kg C m y,但稻壳燃烧生成炭灰会导致 CO 的净释放,从而抵消了任何 SOC 的储存。来自盆栽研究的紫外可见吸收/荧光光谱表明,非淹没处理降低了 DOM 的芳香度和分子大小。我们的数据表明,尽管稻壳增加了 CH 的排放,但在高度风化的稻田土壤中,淹没和添加稻壳和生物炭可以最大限度地储存 C。水分管理对溶解有机物质化学性质的影响比添加物更强烈,但这需要进一步研究。未经处理或低温热解的稻壳的归还有望在水稻稻田土壤中封闭养分循环并保存 SOC。