Laboratory for Immunogenetics, Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany.
HLA. 2023 Sep;102(3):331-342. doi: 10.1111/tan.15068. Epub 2023 Apr 17.
Molecular matching is a new approach for virtual histocompatibility testing in organ transplantation. The aim of our study was to analyze whether the risk for de novo donor-specific HLA antibodies (dnDSA) after lung transplantation (LTX) can be predicted by molecular matching algorithms (MMA) and their combination. In this retrospective study we included 183 patients undergoing LTX at our center from 2012-2020. We monitored dnDSA development for 1 year. Eplet mismatches (epMM) using HLAMatchmaker were calculated and highly immunogenic eplets based on their ElliPro scores were identified. PIRCHE-II scores were calculated using PIRCHE-II algorithm (5- and 11-loci). We compared epMM and PIRCHE-II scores between patients with and without dnDSA using t-test and used ROC-curves to determine optimal cut-off values to categorize patients into four groups. We used logistic regression with AIC to compare the predictive value of PIRCHE-II, epMM, and their combination. In total 28.4% of patients developed dnDSA (n = 52), 12.5% class I dnDSA (n = 23), 24.6% class II dnDSA (n = 45), and 8.7% both class II and II dnDSA (n = 16). Mean epMMs (p-value = 0.005), mean highly immunogenic epMMs (p-value = 0.003), and PIRCHE-II (11-loci) (p = 0.01) were higher in patients with compared to without class II dnDSA. Patients with highly immunogenic epMMs above 30.5 and PIRCHE-II 11-loci above 560.0 were more likely to develop dnDSA (31.1% vs. 14.8%, p-value = 0.03). The logistic regression model including the grouping variable showed the best predictive value. MMA can support clinicians to identify patients at higher or lower risk for developing class II dnDSA and might be helpful tools for immunological risk assessment in LTX patients.
分子配型是器官移植中虚拟组织相容性检测的一种新方法。本研究旨在分析肺移植(LTX)后是否可以通过分子配型算法(MMA)及其组合来预测新的供体特异性 HLA 抗体(dnDSA)的风险。在这项回顾性研究中,我们纳入了 2012 年至 2020 年期间在我们中心接受 LTX 的 183 名患者。我们监测了 1 年的 dnDSA 发展情况。使用 HLAMatchmaker 计算了 Eplet 错配(epMM),并根据 ElliPro 评分确定了高度免疫原性的 Eplet。使用 PIRCHE-II 算法计算了 PIRCHE-II 评分(5-和 11- 位)。我们使用 t 检验比较了有 dnDSA 和无 dnDSA 患者之间的 epMM 和 PIRCHE-II 评分,并使用 ROC 曲线确定最佳截断值将患者分为四组。我们使用包含 AIC 的逻辑回归比较了 PIRCHE-II、epMM 及其组合的预测价值。总共有 28.4%的患者(n=52)发生了 dnDSA,12.5%为 I 类 dnDSA(n=23),24.6%为 II 类 dnDSA(n=45),8.7%为 II 类和 II 类 dnDSA(n=16)。与无 II 类 dnDSA 患者相比,具有 II 类 dnDSA 的患者的平均 epMM(p 值=0.005)、平均高度免疫原性 epMM(p 值=0.003)和 PIRCHE-II(11- 位)(p=0.01)更高。epMM 高于 30.5 和 PIRCHE-II 11- 位高于 560.0 的高度免疫原性 epMM 的患者更有可能发生 dnDSA(31.1%比 14.8%,p 值=0.03)。包括分组变量的逻辑回归模型显示出最佳的预测价值。MMA 可以帮助临床医生识别发生 II 类 dnDSA 风险较高或较低的患者,并且可能是 LTX 患者免疫风险评估的有用工具。