School of Chemistry and Forensics, University of Kent, Canterbury, CT2 7NH, UK.
School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
J Mater Chem B. 2023 May 3;11(17):3958-3968. doi: 10.1039/d3tb00461a.
Antimicrobial resistance is one of the greatest threats to human health. Gram-positive methicillin resistant (MRSA), in both its planktonic and biofilm form, is of particular concern. Herein we identify the hydrogelation properties for a series of intrinsically fluorescent, structurally related supramolecular self-associating amphiphiles and determine their efficacy against both planktonic and biofilm forms of MRSA. To further explore the potential translation of this hydrogel technology for real-world applications, the toxicity of the amphiphiles was determined against the eukaryotic multicellular model organism, . Due to the intrinsic fluorescent nature of these supramolecular amphiphiles, material characterisation of their molecular self-associating properties included; comparative optical density plate reader assays, rheometry and widefield fluorescence microscopy. This enabled determination of amphiphile structure and hydrogel sol dependence on resultant fibre formation.
抗微生物药物耐药性是对人类健康的最大威胁之一。无论是浮游生物还是生物膜形式的革兰氏阳性耐甲氧西林金黄色葡萄球菌(MRSA)都特别令人关注。在本文中,我们确定了一系列具有内在荧光性,结构相关的超分子自组装两亲性化合物的水凝胶特性,并确定了它们对浮游生物和生物膜形式的 MRSA 的功效。为了进一步探索该水凝胶技术在实际应用中的潜在转化,我们针对真核多细胞模式生物 测定了两亲性化合物的毒性。由于这些超分子两亲性化合物具有内在的荧光性质,因此对其分子自组装特性的材料特性进行了表征,包括比较光密度板读数测定,流变学和宽场荧光显微镜。这使我们能够确定两亲性化合物的结构和水凝胶溶胶对纤维形成的依赖性。