Suppr超能文献

机器学习在光学化学多分析物成像中的应用:我们为何应该勇于尝试,以及为何并非没有风险。

Machine learning for optical chemical multi-analyte imaging : Why we should dare and why it's not without risks.

机构信息

Aarhus University Centre for Water Technology (WATEC), Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.

出版信息

Anal Bioanal Chem. 2023 Jun;415(14):2749-2761. doi: 10.1007/s00216-023-04678-8. Epub 2023 Apr 18.

Abstract

Simultaneous sensing of metabolic analytes such as pH and O is critical in complex and heterogeneous biological environments where analytes often are interrelated. However, measuring all target analytes at the same time and position is often challenging. A major challenge preventing further progress occurs when sensor signals cannot be directly correlated to analyte concentrations due to additional effects, overshadowing and complicating the actual correlations. In fields related to optical sensing, machine learning has already shown its potential to overcome these challenges by solving nested and multidimensional correlations. Hence, we want to apply machine learning models to fluorescence-based optical chemical sensors to facilitate simultaneous imaging of multiple analytes in 2D. We present a proof-of-concept approach for simultaneous imaging of pH and dissolved O using an optical chemical sensor, a hyperspectral camera for image acquisition, and a multi-layered machine learning model based on a decision tree algorithm (XGBoost) for data analysis. Our model predicts dissolved O and pH with a mean absolute error of < 4.50·10 and < 1.96·10, respectively, and a root mean square error of < 2.12·10 and < 4.42·10, respectively. Besides the model-building process, we discuss the potentials of machine learning for optical chemical sensing, especially regarding multi-analyte imaging, and highlight risks of bias that can arise in machine learning-based data analysis.

摘要

同时感测代谢分析物,如 pH 值和 O2,在复杂且不均匀的生物环境中至关重要,因为分析物通常是相互关联的。然而,在同一时间和位置测量所有目标分析物通常具有挑战性。当由于额外的影响,传感器信号不能直接与分析物浓度相关时,会出现一个主要的挑战,这些影响会掩盖和复杂化实际的相关性,从而阻止了进一步的进展。在与光学传感相关的领域中,机器学习已经通过解决嵌套和多维相关性显示出克服这些挑战的潜力。因此,我们希望将机器学习模型应用于基于荧光的光学化学传感器,以促进在 2D 中同时对多个分析物进行成像。我们提出了一种使用光学化学传感器、用于图像采集的高光谱相机和基于决策树算法(XGBoost)的多层机器学习模型来同时对 pH 值和溶解氧进行成像的概念验证方法。我们的模型分别以平均绝对误差 < 4.50·10 和 < 1.96·10 预测溶解氧和 pH 值,以均方根误差 < 2.12·10 和 < 4.42·10 预测溶解氧和 pH 值。除了模型构建过程,我们还讨论了机器学习在光学化学传感中的潜力,特别是在多分析物成像方面,并强调了基于机器学习的数据分析中可能出现的偏差风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验