Schwendt Georg, Kalinichev Andrey V, Borisov Sergey M, Koren Klaus
Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.
Department of Biology-Microbiology, Aarhus University Centre for Water Technology, Ny Munkegade 116, 8000 Aarhus C, Denmark.
ACS Meas Sci Au. 2024 Sep 5;4(5):568-576. doi: 10.1021/acsmeasuresciau.4c00040. eCollection 2024 Oct 16.
Chemical gradients are essential in biological systems, affecting processes like microbial activity in soils and nutrient cycling. Traditional tools, such as microsensors, offer high-resolution data but are limited to one-dimensional measurements. Planar optodes allow for two-dimensional (2D) and three-dimensional (3D) chemical imaging but are often sensitive to temperature changes. This study presents an advanced dual-emission optical sensor that simultaneously measures temperature and oxygen using a modified platinum(II) meso-tetrakis(3,5-di-butylphenyl)-tetra(2--butyl-1,4-naphthoquinono)porphyrin. The ratio between thermally activated delayed fluorescence and phosphorescence was optimized by modifying platinum(II) naphthoquinonoporphyrin with -butyl groups which simultaneously improved solubility in apolar solvents and polymer matrix (polystyrene). This dual-function sensor enables two-parameter chemical imaging with a consumer-grade RGB camera or a hyperspectral camera. We demonstrated 2D visualization of temperature and oxygen distribution in a model soil system. The RGB camera provided rapid and cost-effective imaging, while the hyperspectral camera offered more detailed spectral information despite some limitations. Our findings revealed the formation of a stable temperature gradient and oxygen depletion, driven by water content and temperature-sensitive microbial activity. This dual O/T sensor, with further potential improvements, shows considerable promise for advanced multiparameter sensing in complex biological and environmental studies, providing deeper insights into dynamic microenvironments.
化学梯度在生物系统中至关重要,影响着诸如土壤中微生物活动和养分循环等过程。传统工具,如微传感器,可提供高分辨率数据,但仅限于一维测量。平面光极可实现二维(2D)和三维(3D)化学成像,但通常对温度变化敏感。本研究提出了一种先进的双发射光学传感器,该传感器使用改性的铂(II)中-四(3,5-二丁基苯基)-四(2-丁基-1,4-萘醌)卟啉同时测量温度和氧气。通过用丁基修饰铂(II)萘醌卟啉优化了热激活延迟荧光与磷光之间的比率,这同时提高了其在非极性溶剂和聚合物基质(聚苯乙烯)中的溶解度。这种双功能传感器可通过消费级RGB相机或高光谱相机实现双参数化学成像。我们展示了模型土壤系统中温度和氧气分布的二维可视化。RGB相机提供了快速且经济高效的成像,而高光谱相机尽管存在一些局限性,但提供了更详细的光谱信息。我们的研究结果揭示了由含水量和温度敏感的微生物活动驱动的稳定温度梯度的形成和氧气消耗。这种双O/T传感器,经过进一步潜在改进,在复杂的生物和环境研究中的先进多参数传感方面显示出巨大潜力,为深入了解动态微环境提供了更深刻的见解。