Suppr超能文献

手性钌催化剂在氮宾介导的不对称 C-H 官能化反应中的应用。

Chiral-at-Ruthenium Catalysts for Nitrene-Mediated Asymmetric C-H Functionalizations.

机构信息

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany.

出版信息

Acc Chem Res. 2023 May 2;56(9):1128-1141. doi: 10.1021/acs.accounts.3c00081. Epub 2023 Apr 18.

Abstract

ConspectusAsymmetric transition metal catalysis is an indispensable tool used both in academia and industry for forging chiral molecules in an enantioselective fashion. Its advancement relies in large part on the design and discovery of new chiral catalysts. In contrast to conventional endeavors of generating chiral transition metal catalysts from carefully tailored chiral ligands, the development of chiral transition metal catalysts containing solely achiral ligands (chiral-at-metal catalysts) has been neglected. This Account presents our recent work on the synthesis and catalytic applications of a new class of -symmetric chiral-at-ruthenium catalysts. These octahedral ruthenium(II) complexes are constructed from two achiral bidentate -(2-pyridyl)-substituted -heterocyclic carbene (PyNHC) ligands and two monodentate acetonitriles, and the dicationic complexes are typically complemented with two hexafluorophosphate anions. The chirality of these complexes originates from the helical -arrangement of the bidentate ligands, thereby generating a stereogenic metal center as the exclusive stereocenter in these complexes. The strong σ donor and π acceptor properties of the PyNHC ligands provide a strong ligand field that ensures a high constitutional and configurational inertness of the helical Ru(PyNHC) core, while at the same time, the -effect exerted by the σ-donating NHC ligands results in high lability of the MeCN ligands and, therefore, provides high catalytic activity. As a result, this chiral-at-ruthenium catalyst scaffold combines formidable structural robustness with high catalytic activity in a unique fashion. Asymmetric nitrene C-H insertion constitutes an efficient strategy for accessing chiral amines. The direct conversion of C(sp)-H bonds into amine functionality circumvents the need for using functionalized starting materials. Our -symmetric chiral-at-ruthenium complexes display exceptionally high catalytic activity and excellent stereocontrol for various asymmetric nitrene C(sp)-H insertion reactions. The ruthenium nitrene species can be generated from nitrene precursors, such as organic azides and hydroxylamine derivatives, which undergo ring-closing C-H aminations to afford chiral cyclic pyrrolidines, ureas, and carbamates in high yields and with excellent enantioselectivities at low catalyst loadings. Mechanistically, the turnover-determining C-H insertion is proposed to proceed in a concerted or stepwise fashion, depending on the nature of intermediate ruthenium nitrenes (singlet or triplet). Computational studies revealed that the stereocontrol originates from a better steric fit in combination with favorable catalyst/substrate π-π stacking effects for aminations at benzylic C-H bonds. In addition, we also present our research for exploring novel reaction patterns and reactivities of intermediate transition metal nitrenes. First, we discovered a novel chiral-at-ruthenium-catalyzed 1,3-migratory nitrene C(sp)-H insertion to convert azanyl esters into nonracemic α-amino acids. Second, we found a chiral-at-ruthenium-catalyzed intramolecular C(sp)-H oxygenation, thereby allowing for the construction of chiral cyclic carbonates and lactones via nitrene chemistry. We expect that our research program on catalyst development and reaction discovery will inspire the creation of novel types of chiral-at-metal catalysts and drive the development of new applications for nitrene-mediated asymmetric C-H functionalization reactions.

摘要

概要

不对称过渡金属催化是学术界和工业界用于手性分子对映选择性合成的不可或缺的工具。它的发展在很大程度上依赖于新的手性催化剂的设计和发现。与从精心设计的手性配体中生成手性过渡金属催化剂的传统方法相比,仅含有非手性配体的手性过渡金属催化剂(手性原子金属催化剂)的开发一直被忽视。本报告介绍了我们在手性钌(Ⅱ)配合物的合成和催化应用方面的最新工作。这些八面体钌(Ⅱ)配合物由两个非手性双齿(2-吡啶基)取代的杂环卡宾(PyNHC)配体和两个单齿乙腈组成,二价阳离子配合物通常与两个六氟磷酸根阴离子互补。这些配合物的手性来源于双齿配体的螺旋排列,从而在这些配合物中生成唯一的手性金属中心作为立体中心。PyNHC 配体的强 σ 给体和π 受体性质提供了一个强的配体场,确保了螺旋 Ru(PyNHC)核的高构象和构型惰性,同时,由 σ-供体 NHC 配体施加的 - 效应导致 MeCN 配体的高离解性,因此具有高催化活性。因此,这种手性原子金属催化剂骨架以独特的方式结合了强大的结构稳定性和高催化活性。不对称氮烯 C-H 插入是一种有效策略,可用于构建手性胺。通过 C(sp)-H 键的直接转化形成胺官能团,避免了使用功能化起始原料的需要。我们的手性原子金属钌配合物在手性氮烯 C(sp)-H 插入反应中表现出极高的催化活性和出色的立体控制。钌氮烯物种可以通过氮烯前体(如有机叠氮化物和羟胺衍生物)生成,它们经历闭环 C-H 氨化反应,以低催化剂负载量高产率和优异的对映选择性得到手性环状吡咯烷、脲和氨基甲酸酯。从机理上看,周转决定的 C-H 插入被提议以协同或分步方式进行,具体取决于中间钌氮烯的性质(单重态或三重态)。计算研究表明,立体控制源于更好的空间适应性以及在苄基 C-H 键氨化中有利的催化剂/底物 π-π 堆积效应的结合。此外,我们还介绍了我们探索中间过渡金属氮烯的新型反应模式和反应性的研究。首先,我们发现了一种新型的手性原子金属钌催化的 1,3-迁移氮烯 C(sp)-H 插入反应,可将氮烷酯转化为非外消旋的α-氨基酸。其次,我们发现了手性原子金属钌催化的分子内 C(sp)-H 氧化,从而允许通过氮烯化学构建手性环状碳酸酯和内酯。我们希望我们在手性原子金属催化剂的开发和反应发现方面的研究计划将激发新型手性原子金属催化剂的创造,并推动氮烯介导的不对称 C-H 功能化反应的新应用的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验