Suppr超能文献

随机立方自催化反应-扩散系统相图的数值和重整化群分析。

Numerical and renormalization group analysis of the phase diagram of a stochastic cubic autocatalytic reaction-diffusion system.

机构信息

Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138-1204, USA.

Group of Nonlinear Physics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.

出版信息

Phys Rev E. 2023 Mar;107(3-1):034213. doi: 10.1103/PhysRevE.107.034213.

Abstract

The renormalization group is a set of tools that can be used to incorporate the effect of fluctuations in a dynamical system as a rescaling of the system's parameters. Here, we apply the renormalization group to a pattern-forming stochastic cubic autocatalytic reaction-diffusion model and compare its predictions with numerical simulations. Our results demonstrate a good agreement within the range of validity of the theory and show that external noise can be used as a control parameter in such systems.

摘要

重整化群是一组工具,可用于将动力学系统中波动的影响纳入系统参数的重新缩放中。在这里,我们将重整化群应用于形成图案的随机立方自催化反应-扩散模型,并将其预测与数值模拟进行比较。我们的结果表明,在理论的有效范围内具有良好的一致性,并表明外部噪声可作为此类系统中的控制参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验