Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany.
Department of Chemistry and Pharmacy, Chair of Aroma and Smell Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9, 91054 Erlangen, Germany.
J Breath Res. 2023 May 3;17(3). doi: 10.1088/1752-7163/acce34.
The first and most crucial step in breath research is adequate sampling, which plays a pivotal role in quality assurance of breath datasets. In particular, the emissions or uptake of volatile organic compounds (VOCs) by sampling interface materials present a risk of disrupting breath gas samples. This study investigated emissions and uptake by three interface components, namely a silicon facemask, a reusable 3D-printed mouthpiece adapter, and a pulmonary function test filter compatible with the commercial Respiration Collector forAnalysis (ReCIVA) breath sampling device. Emissions were examined before and after (hydro-)thermal treatment of the components, and uptake was assessed by exposing each material to 12 representative breath VOCs comprising alcohols, aldehydes, ketones, carboxylic acids, terpenes, sulphurous and nitrogenous compounds at different target concentration ranges (∼10 ppband ∼100 ppb). Chemical analyses of VOCs were performed using proton transfer reaction-time-of-flight-mass spectrometry (PTR-TOFMS) with supporting analyses via thermal desorption comprehensive two-dimensional gas chromatography-TOFMS (TD-GC×GC-TOFMS). The filter exhibited the lowest overall emissions compared to the mask or adapter, which both had equivalently high emissions (albeit for different compounds). Treatment of the materials reduced the total VOC emissions by 62% in the mask, 89% in the filter and 99% in the adapter. Uptakes of compounds were lowest for the adapter and most pronounced in the mask. In particular, 1-butanol, acetone, 2-butanone, 1,8-cineole and dimethyl sulphide showed negligible uptake across all materials, whereas ethanol, nonanal, acetic acid, butanoic acid, limonene and indole exhibited marked losses. Knowledge of emissions and/or uptake by sampling components is key to reducing the likelihood of erroneous data interpretation, ultimately expediting progress in the field of breath test development.
在呼吸研究中,第一步也是最重要的一步是充分采样,这对于保证呼吸数据集的质量至关重要。特别是,采样接口材料对挥发性有机化合物(VOC)的排放或吸收存在破坏呼吸气体样本的风险。本研究调查了三种接口组件的排放和吸收,即硅面罩、可重复使用的 3D 打印的咬嘴适配器和与商业呼吸收集器 forAnalysis(ReCIVA)呼吸采样装置兼容的肺功能测试过滤器。在对组件进行(水)热处理前后检查了排放情况,并通过将每种材料暴露于包含醇、醛、酮、羧酸、萜烯、含硫和含氮化合物的 12 种代表性呼吸 VOC 来评估吸收情况,这些化合物的目标浓度范围不同(约 10 ppb 和约 100 ppb)。使用质子转移反应-飞行时间质谱(PTR-TOFMS)对 VOC 进行化学分析,并通过热解吸全二维气相色谱-TOFMS(TD-GC×GC-TOFMS)进行辅助分析。与面罩或适配器相比,过滤器的整体排放量最低,而面罩和适配器的排放量同样很高(尽管排放的化合物不同)。材料处理将面罩中的总 VOC 排放量减少了 62%,将过滤器中的总 VOC 排放量减少了 89%,将适配器中的总 VOC 排放量减少了 99%。化合物的吸收在适配器中最低,在面罩中最明显。特别是,1-丁醇、丙酮、2-丁酮、1,8-桉树脑和二甲硫醚在所有材料中均表现出可忽略不计的吸收,而乙醇、壬醛、乙酸、丁酸、柠檬烯和吲哚则表现出明显的损失。了解采样组件的排放和/或吸收情况对于减少错误数据解释的可能性至关重要,最终可以加速呼吸测试开发领域的进展。