Suppr超能文献

基于定量图像的胶原结构特征可预测抗病毒治疗后丙型肝炎病毒诱导的肝纤维化的可逆性。

Quantitative image-based collagen structural features predict the reversibility of hepatitis C virus-induced liver fibrosis post antiviral therapies.

机构信息

Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos Building, Singapore, 138673, Singapore.

Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, No. 11, Xi Zhimen South Street, Beijing, 100044, People's Republic of China.

出版信息

Sci Rep. 2023 Apr 19;13(1):6384. doi: 10.1038/s41598-023-33567-4.

Abstract

The novel targeted therapeutics for hepatitis C virus (HCV) in last decade solved most of the clinical needs for this disease. However, despite antiviral therapies resulting in sustained virologic response (SVR), a challenge remains where the stage of liver fibrosis in some patients remains unchanged or even worsens, with a higher risk of cirrhosis, known as the irreversible group. In this study, we provided novel tissue level collagen structural insight into early prediction of irreversible cases via image based computational analysis with a paired data cohort (of pre- and post-SVR) following direct-acting-antiviral (DAA)-based treatment. Two Photon Excitation and Second Harmonic Generation microscopy was used to image paired biopsies from 57 HCV patients and a fully automated digital collagen profiling platform was developed. In total, 41 digital image-based features were profiled where four key features were discovered to be strongly associated with fibrosis reversibility. The data was validated for prognostic value by prototyping predictive models based on two selected features: Collagen Area Ratio and Collagen Fiber Straightness. We concluded that collagen aggregation pattern and collagen thickness are strong indicators of liver fibrosis reversibility. These findings provide the potential implications of collagen structural features from DAA-based treatment and paves the way for a more comprehensive early prediction of reversibility using pre-SVR biopsy samples to enhance timely medical interventions and therapeutic strategies. Our findings on DAA-based treatment further contribute to the understanding of underline governing mechanism and knowledge base of structural morphology in which the future non-invasive prediction solution can be built upon.

摘要

在过去十年中,针对丙型肝炎病毒 (HCV) 的新型靶向治疗药物解决了该疾病的大部分临床需求。然而,尽管抗病毒治疗可导致持续病毒学应答 (SVR),但仍存在一个挑战,即一些患者的肝纤维化阶段保持不变甚至恶化,肝硬化风险更高,称为不可逆组。在这项研究中,我们通过基于直接作用抗病毒 (DAA) 治疗的配对数据队列(治疗前后)的基于图像的计算分析,为不可逆转病例的早期预测提供了新颖的组织水平胶原结构见解。我们使用双光子激发和二次谐波产生显微镜对 57 名 HCV 患者的配对活检进行成像,并开发了一个完全自动化的数字胶原分析平台。总共对 41 个基于数字图像的特征进行了分析,其中发现四个关键特征与纤维化的可逆性密切相关。通过基于两个选定特征(胶原面积比和胶原纤维直度)的预测模型原型验证了数据的预后价值。我们得出的结论是,胶原聚集模式和胶原厚度是肝纤维化可逆性的强指标。这些发现为基于 DAA 的治疗的胶原结构特征提供了潜在的影响,并为使用治疗前活检样本进行更全面的早期可逆性预测铺平了道路,以增强及时的医疗干预和治疗策略。我们关于 DAA 治疗的发现进一步加深了对结构形态下潜在控制机制和知识库的理解,未来可以在此基础上构建非侵入性预测解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ddc/10115775/ac8fccc623a3/41598_2023_33567_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验