Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada.
Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
Stem Cell Res Ther. 2023 Apr 19;14(1):96. doi: 10.1186/s13287-023-03318-3.
Constructs currently used to repair or replace congenitally diseased pediatric heart valves lack a viable cell population capable of functional adaptation in situ, necessitating repeated surgical intervention. Heart valve tissue engineering (HVTE) can address these limitations by producing functional living tissue in vitro that holds the potential for somatic growth and remodelling upon implantation. However, clinical translation of HVTE strategies requires an appropriate source of autologous cells that can be non-invasively harvested from mesenchymal stem cell (MSC)-rich tissues and cultured under serum- and xeno-free conditions. To this end, we evaluated human umbilical cord perivascular cells (hUCPVCs) as a promising cell source for in vitro production of engineered heart valve tissue.
The proliferative, clonogenic, multilineage differentiation, and extracellular matrix (ECM) synthesis capacities of hUCPVCs were evaluated in a commercial serum- and xeno-free culture medium (StemMACS™) on tissue culture polystyrene and benchmarked to adult bone marrow-derived MSCs (BMMSCs). Additionally, the ECM synthesis potential of hUCPVCs was evaluated when cultured on polycarbonate polyurethane anisotropic electrospun scaffolds, a representative biomaterial for in vitro HVTE.
hUCPVCs had greater proliferative and clonogenic potential than BMMSCs in StemMACS™ (p < 0.05), without differentiation to osteogenic and adipogenic phenotypes associated with valve pathology. Furthermore, hUCPVCs cultured with StemMACS™ on tissue culture plastic for 14 days synthesized significantly more total collagen, elastin, and sulphated glycosaminoglycans (p < 0.05), the ECM constituents of the native valve, than BMMSCs. Finally, hUCPVCs retained their ECM synthesizing capacity after 14 and 21 days in culture on anisotropic electrospun scaffolds.
Overall, our findings establish an in vitro culture platform that uses hUCPVCs as a readily-available and non-invasively sourced autologous cell population and a commercial serum- and xeno-free culture medium to increase the translational potential of future pediatric HVTE strategies. This study evaluated the proliferative, differentiation and extracellular matrix (ECM) synthesis capacities of human umbilical cord perivascular cells (hUCPVCs) when cultured in serum- and xeno-free media (SFM) against conventionally used bone marrow-derived MSCs (BMMSCs) and serum-containing media (SCM). Our findings support the use of hUCPVCs and SFM for in vitro heart valve tissue engineering (HVTE) of autologous pediatric valve tissue. Figure created with BioRender.com.
目前用于修复或替换先天性小儿心脏瓣膜的构建体缺乏能够在原位进行功能适应的有活力的细胞群体,这需要反复的手术干预。心脏瓣膜组织工程(HVTE)可以通过在体外产生具有功能的活组织来解决这些局限性,这种活组织具有在植入后进行体细胞生长和重塑的潜力。然而,HVTE 策略的临床转化需要一种合适的自体细胞来源,可以从富含间充质干细胞(MSC)的组织中无创采集,并在无血清和无异种细胞的条件下培养。为此,我们评估了人脐带血管周细胞(hUCPVC)作为一种有前途的细胞来源,用于体外生产工程心脏瓣膜组织。
在商业无血清和无异种细胞培养物(StemMACS™)中评估 hUCPVC 的增殖、克隆形成、多谱系分化和细胞外基质(ECM)合成能力,并与成人骨髓来源的间充质干细胞(BMMSCs)进行基准比较。此外,当在聚碳酸酯聚氨酯各向异性静电纺丝支架上培养时,评估 hUCPVC 的 ECM 合成潜力,这是体外 HVTE 的代表性生物材料。
hUCPVC 在 StemMACS™ 中的增殖和克隆形成潜力大于 BMMSCs(p<0.05),而没有分化为与瓣膜病理相关的成骨和脂肪表型。此外,在组织培养塑料上用 StemMACS™ 培养 14 天的 hUCPVC 合成的总胶原蛋白、弹性蛋白和硫酸化糖胺聚糖(GAGs)显著更多(p<0.05),这是天然瓣膜的 ECM 成分,而 BMMSCs 则不然。最后,hUCPVC 在各向异性静电纺丝支架上培养 14 天和 21 天后仍然保持其 ECM 合成能力。
总的来说,我们的研究结果建立了一个体外培养平台,该平台使用 hUCPVC 作为一种易于获得和无创采集的自体细胞群体,以及一种商业的无血清和无异种细胞培养物(SFM),以增加未来儿科 HVTE 策略的转化潜力。本研究评估了人脐带血管周细胞(hUCPVC)在无血清和无异种细胞培养基(SFM)中的增殖、分化和细胞外基质(ECM)合成能力,与传统使用的骨髓来源间充质干细胞(BMMSCs)和含血清培养基(SCM)进行比较。我们的研究结果支持使用 hUCPVC 和 SFM 进行自体小儿瓣膜组织的体外心脏瓣膜组织工程(HVTE)。该图由 BioRender.com 创建。