Suppr超能文献

用于组织工程心脏瓣膜应用的大薄生物材料的各向异性、双轴应变的机械生物反应器的设计。

Design of a Mechanobioreactor to Apply Anisotropic, Biaxial Strain to Large Thin Biomaterials for Tissue Engineered Heart Valve Applications.

机构信息

Translational Biology and Engineering Program, The Ted Rogers Centre for Heart Research, Toronto, Canada.

Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada.

出版信息

Ann Biomed Eng. 2022 Sep;50(9):1073-1089. doi: 10.1007/s10439-022-02984-3. Epub 2022 May 27.

Abstract

Repair and replacement solutions for congenitally diseased heart valves capable of post-surgery growth and adaptation have remained elusive. Tissue engineered heart valves (TEHVs) offer a potential biological solution that addresses the drawbacks of existing valve replacements. Typically, TEHVs are made from thin, fibrous biomaterials that either become cell populated in vitro or in situ. Often, TEHV designs poorly mimic the anisotropic mechanical properties of healthy native valves leading to inadequate biomechanical function. Mechanical conditioning of engineered tissues with anisotropic strain application can induce extracellular matrix remodelling to alter the anisotropic mechanical properties of a construct, but implementation has been limited to small-scale set-ups. To address this limitation for TEHV applications, we designed and built a mechanobioreactor capable of modulating biaxial strain anisotropy applied to large, thin, biomaterial sheets in vitro. The bioreactor can independently control two orthogonal stretch axes to modulate applied strain anisotropy on biomaterial sheets from 13 × 13 mm to 70 × 40 mm. A design of experiments was performed using experimentally validated finite element (FE) models and demonstrated that biaxial strain was applied uniformly over a larger percentage of the cell seeded area for larger sheets (13 × 13 mm: 58% of sheet area vs. 52 × 31 mm: 86% of sheet area). Furthermore, bioreactor prototypes demonstrated that over 70% of the cell seeding area remained uniformly strained under different prescribed protocols: equibiaxial amplitudes between 5 to 40%, cyclic frequencies between 0.1 to 2.5 Hz and anisotropic strain ratios between 0:1 (constrained uniaxial) to 2:1. Lastly, proof-of-concept experiments were conducted where we applied equibiaxial (ε = ε = 8.75%) and anisotropic (ε = 12.5%, ε = 5%) strain protocols to cell-seeded, electrospun scaffolds. Cell nuclei and F-actin aligned to the vector-sum strain direction of each prescribed protocol (nuclei alignment: equibiaxial: 43.2° ± 1.8°, anisotropic: 17.5° ± 1.7°; p < 0.001). The abilities of this bioreactor to prescribe different strain amplitude, frequency and strain anisotropy protocols to cell-seeded scaffolds will enable future studies into the effects of anisotropic loading protocols on mechanically conditioned TEHVs and other engineered planar connective tissues.

摘要

对于能够在手术后生长和适应的先天性病变心脏瓣膜的修复和替换解决方案,一直难以捉摸。组织工程心脏瓣膜 (TEHV) 提供了一种潜在的生物学解决方案,可以解决现有瓣膜替换的缺点。通常,TEHV 由薄的纤维状生物材料制成,这些生物材料要么在体外或原位变成细胞定植。通常,TEHV 设计不能很好地模拟健康天然瓣膜的各向异性机械性能,导致生物力学功能不足。对具有各向异性应变施加的工程组织进行机械调节可以诱导细胞外基质重塑,从而改变构建体的各向异性机械性能,但实施受到限制小规模设置。为了解决 TEHV 应用中的这一限制,我们设计并制造了一种能够调节体外大而薄的生物材料片上双轴应变各向异性的生物反应器。该生物反应器可以独立控制两个正交拉伸轴,以调节生物材料片上的施加应变各向异性,范围从 13×13mm 到 70×40mm。使用经过实验验证的有限元 (FE) 模型进行了实验设计,并表明对于较大的薄片,双轴应变均匀地施加在更大比例的细胞接种区域上(13×13mm:58%的薄片面积与 52×31mm:86%的薄片面积)。此外,生物反应器原型表明,在不同的规定方案下,超过 70%的细胞接种区域保持均匀应变:等双轴幅度在 5%至 40%之间,循环频率在 0.1 至 2.5Hz 之间,各向异性应变比在 0:1(约束单轴)至 2:1 之间。最后,进行了概念验证实验,我们在细胞接种的静电纺丝支架上施加了等双轴(ε=ε=8.75%)和各向异性(ε=12.5%,ε=5%)应变方案。细胞核和 F-肌动蛋白沿每个规定方案的矢量和应变方向排列(核取向:等双轴:43.2°±1.8°,各向异性:17.5°±1.7°;p<0.001)。该生物反应器能够为细胞接种支架规定不同的应变幅度、频率和应变各向异性方案的能力将使未来能够研究各向异性加载方案对机械调节的 TEHV 和其他工程平面连接组织的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验