Swinkels Constant, van der Wal Jessica E M, Stinn Christina, Monteza-Moreno Claudio M, Jansen Patrick A
Wildlife Ecology & Conservation, Department of Environmental Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.
Smithsonian Tropical Research Institute, Balboa, Ancón 0843-03092, Republic of Panama.
J Mammal. 2022 Nov 11;104(1):137-145. doi: 10.1093/jmammal/gyac091. eCollection 2023 Feb.
Whether prey species avoid predators and predator species track prey is a poorly understood aspect of predator-prey interactions, given measuring prey tracking by predators and predator avoidance by prey is challenging. A common approach to study these interactions among mammals in field situations is to monitor the spatial proximity of animals at fixed times, using GPS tags fitted to individuals. However, this method is invasive and only allows tracking of a subset of individuals. Here, we use an alternative, noninvasive camera-trapping approach to monitor temporal proximity of predator and prey animals. We deployed camera traps at fixed locations on Barro Colorado Island, Panama, where the ocelot () is the principal mammalian predator, and tested two hypotheses: (1) prey animals avoid ocelots; and (2) ocelots track prey. We quantified temporal proximity of predators and prey by fitting parametric survival models to the time intervals between subsequent prey and predator captures by camera traps, and then compared the observed intervals to random permutations that retained the spatiotemporal distribution of animal activity. We found that time until a prey animal appeared at a location was significantly longer than expected by chance if an ocelot had passed, and that the time until an ocelot appeared at a location was significantly shorter than expected by chance after prey passage. These findings are indirect evidence for both predator avoidance and prey tracking in this system. Our results show that predator avoidance and prey tracking influence predator and prey distribution over time in a field setting. Moreover, this study demonstrates that camera trapping is a viable and noninvasive alternative to GPS tracking for studying certain predator-prey interactions.
鉴于测量捕食者对猎物的追踪以及猎物对捕食者的躲避具有挑战性,猎物物种是否会躲避捕食者以及捕食者物种是否会追踪猎物,是捕食者 - 猎物相互作用中一个尚未得到充分理解的方面。在野外环境中研究哺乳动物之间这些相互作用的一种常见方法是,使用安装在个体身上的GPS标签,在固定时间监测动物的空间接近程度。然而,这种方法具有侵入性,并且只允许追踪一部分个体。在这里,我们使用一种替代性的、非侵入性的相机陷阱方法来监测捕食者和猎物动物的时间接近程度。我们在巴拿马的巴罗科罗拉多岛的固定地点部署了相机陷阱,在那里豹猫()是主要的哺乳动物捕食者,并测试了两个假设:(1)猎物动物会躲避豹猫;(2)豹猫会追踪猎物。我们通过将参数生存模型拟合到相机陷阱随后捕获猎物和捕食者之间的时间间隔,来量化捕食者和猎物的时间接近程度,然后将观察到的间隔与保留动物活动时空分布的随机排列进行比较。我们发现,如果有豹猫经过,猎物动物出现在某个地点之前的时间明显比随机预期的要长,并且在猎物经过之后,豹猫出现在某个地点之前的时间明显比随机预期的要短。这些发现是该系统中猎物躲避和捕食者追踪的间接证据。我们的结果表明,猎物躲避和捕食者追踪会随着时间影响野外环境中捕食者和猎物的分布。此外,这项研究表明,对于研究某些捕食者 - 猎物相互作用,相机陷阱是一种可行的、非侵入性的替代GPS追踪的方法。