Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
Cells Dev. 2023 Jun;174:203842. doi: 10.1016/j.cdev.2023.203842. Epub 2023 Apr 18.
Plants produce the major part of terrestrial biomass and are long-term deposits of atmospheric carbon. This capacity is to a large extent due to radial growth of woody species - a process driven by cambium stem cells located in distinct niches of shoot and root axes. In the model species Arabidopsis thaliana, thousands of cells are produced by the cambium in radial orientation generating a complex organ anatomy enabling long-distance transport, mechanical support and protection against biotic and abiotic stressors. These complex organ dynamics make a comprehensive and unbiased analysis of radial growth challenging and asks for tools for automated quantification. Here, we combined the recently developed PlantSeg and MorphographX image analysis tools, to characterize tissue morphogenesis of the Arabidopsis hypocotyl. After sequential training of segmentation models on ovules, shoot apical meristems and adult hypocotyls using deep machine learning, followed by the training of cell type classification models, our pipeline segments complex images of transverse hypocotyl sections with high accuracy and classifies central hypocotyl cell types. By applying our pipeline on both wild type and phloem intercalated with xylem (pxy) mutants, we also show that this strategy faithfully detects major anatomical aberrations. Collectively, we conclude that our established pipeline is a powerful phenotyping tool comprehensively extracting cellular parameters and providing access to tissue topology during radial plant growth.
植物产生了大部分陆地生物量,并且是大气碳的长期储存库。这种能力在很大程度上归因于木质部物种的径向生长——这一过程是由位于茎和根轴不同小生境中的形成层干细胞驱动的。在模式物种拟南芥中,形成层以径向方向产生了数千个细胞,从而形成了复杂的器官解剖结构,使其能够进行长距离运输、机械支撑,并抵御生物和非生物胁迫。这些复杂的器官动态使得对径向生长进行全面和无偏的分析具有挑战性,并需要自动化定量工具。在这里,我们结合了最近开发的 PlantSeg 和 MorphographX 图像分析工具,以研究拟南芥下胚轴的组织形态发生。在使用深度学习对胚珠、茎尖分生组织和成熟下胚轴进行分割模型的顺序训练后,我们接着对细胞类型分类模型进行了训练,我们的流水线以高精度对横向下胚轴切片的复杂图像进行分割,并对中央下胚轴细胞类型进行分类。通过在野生型和木质部与韧皮部相间(pxy)突变体上应用我们的流水线,我们还表明该策略能够准确检测主要的解剖结构异常。总之,我们得出结论,我们建立的流水线是一种强大的表型分析工具,可以全面提取细胞参数,并在植物径向生长过程中提供组织拓扑结构的访问权限。