Institute of Microbial Technology, Council of Scientific and Industrial Research, Room No 508, Sector 39 A, Chandigarh, India, 160036.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India, 201002.
BMC Microbiol. 2023 Apr 20;23(1):111. doi: 10.1186/s12866-023-02853-6.
Mycobacterium tuberculosis (Mtb) forms physiologically relevant biofilms harboring drug-tolerant bacteria. This observation has brought the study of mycobacterial biofilms to the forefront of tuberculosis research. We established earlier that dithiothreitol (DTT) mediated reductive stress induces cellulose-rich biofilm formation in Mtb cultures. The molecular events associated with the DTT-induced biofilm formation are not known. Furthermore, there are only limited tools for monitoring the presence of cellulose in biofilms.
To decipher the molecular events associated with DTT-induced biofilm formation, we used Mtb and non-pathogenic, fast-growing Mycobacterium smegmatis (Msm). We observed that DTT induces biofilm formation in Msm cultures. We explored whether media components facilitate biofilm formation in mycobacteria upon exposure to DTT. We observed that media component bovine serum albumin promotes mycobacterial biofilm formation in response to DTT. Furthermore, we analyzed the composition of extracellular polymeric substances of Msm biofilms. We found that, like Mtb biofilms, Msm biofilms are also rich in polysaccharides and proteins. We also developed a novel protein-based molecular probe for imaging cellulose by utilizing the cellulose-binding domain of cellulase CenA from Cellulomonas fimi and fusing it to fluorescent reporter mCherry. Characterization of this new probe revealed that it has a high affinity for cellulose and could be used for visualizing cellulose biosynthesis during the development of Agrobacterium biofilms. Furthermore, we have demonstrated that biological macromolecule cellulose is present in the extracellular polymeric substances of Msm biofilms using this novel probe.
This study indicates that DTT-mediated reduction of media component BSA leads to the formation of nucleating foci. These nucleating foci are critical for subsequent attachment of bacterial cells and induction of EPS production. Furthermore, this new tool, IMT-CBD-mC, could be used for monitoring cellulose incorporation in plant cells, understanding cellulose biosynthesis dynamics during biofilm formation, etc.
结核分枝杆菌(Mtb)形成具有生理相关性的生物膜,其中含有耐药细菌。这一观察结果使分枝杆菌生物膜的研究成为结核病研究的前沿。我们之前已经证实,二硫苏糖醇(DTT)介导的还原应激诱导 Mtb 培养物中富含纤维素的生物膜形成。与 DTT 诱导的生物膜形成相关的分子事件尚不清楚。此外,用于监测生物膜中纤维素存在的工具非常有限。
为了解 DTT 诱导的生物膜形成相关的分子事件,我们使用了 Mtb 和非致病性、快速生长的分枝杆菌耻垢分枝杆菌(Msm)。我们观察到 DTT 诱导 Msm 培养物中生物膜的形成。我们探讨了在接触 DTT 时,培养基成分是否有助于分枝杆菌生物膜的形成。我们观察到,培养基成分牛血清白蛋白促进 DTT 响应下分枝杆菌生物膜的形成。此外,我们分析了 Msm 生物膜细胞外聚合物的组成。我们发现,与 Mtb 生物膜一样,Msm 生物膜也富含多糖和蛋白质。我们还开发了一种新型基于蛋白质的分子探针,用于通过利用纤维二糖酶 CenA 的纤维素结合结构域并将其融合到荧光报告蛋白 mCherry 上来对纤维素进行成像。该新探针的特性表明它对纤维素具有高亲和力,可用于在农杆菌生物膜发育过程中可视化纤维素生物合成。此外,我们使用这种新型探针证明了生物大分子纤维素存在于 Msm 生物膜的细胞外聚合物中。
本研究表明,DTT 介导的培养基成分 BSA 的还原导致成核焦点的形成。这些成核焦点对于随后的细菌细胞附着和 EPS 产生的诱导至关重要。此外,这种新工具 IMT-CBD-mC 可用于监测植物细胞中纤维素的掺入、理解生物膜形成过程中纤维素生物合成动力学等。