Suppr超能文献

用于药物加载的细胞外囊泡挤压的粗粒度分子模拟。

Coarse-grained molecular simulation of extracellular vesicle squeezing for drug loading.

机构信息

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA.

Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Phys Chem Chem Phys. 2023 May 3;25(17):12308-12321. doi: 10.1039/d3cp00387f.

Abstract

In recent years, extracellular vesicles have become promising carriers as next-generation drug delivery platforms. Effective loading of exogenous cargos without compromising the extracellular vesicle membrane is a major challenge. Rapid squeezing through nanofluidic channels is a widely used approach to load exogenous cargoes into the EV through the nanopores generated temporarily on the membrane. However, the exact mechanism and dynamics of nanopore opening, as well as cargo loading through nanopores during the squeezing process remains unknown and it is impossible to visualize or quantify it experimentally due to the small size of the EV and the fast transient process. This paper developed a systemic algorithm to simulate nanopore formation and predict drug loading during extracellular vesicle (EV) squeezing by leveraging the power of coarse-grain (CG) molecular dynamics simulations with fluid dynamics. The EV CG beads are coupled with implicit the fluctuating lattice Boltzmann solvent. The effects of EV properties and various squeezing test parameters, such as EV size, flow velocity, channel width, and length, on pore formation and drug loading efficiency are analyzed. Based on the simulation results, a phase diagram is provided as a design guide for nanochannel geometry and squeezing velocity to generate pores on the membrane without damaging the EV. This method can be utilized to optimize the nanofluidic device configuration and flow setup to obtain desired drug loading into EVs.

摘要

近年来,细胞外囊泡作为下一代药物递送平台成为了极具潜力的载体。如何在不损害囊泡膜的情况下有效地装载外源性货物,是一个重大挑战。快速挤压通过纳米流道是一种广泛使用的方法,通过在膜上临时生成的纳米孔将外源性货物装入 EV 中。然而,纳米孔打开的确切机制和动力学,以及在挤压过程中通过纳米孔装载货物的情况仍然未知,由于 EV 的体积小和快速瞬态过程,无法通过实验进行可视化或量化。本文开发了一种系统算法,通过利用粗粒(CG)分子动力学模拟与流体动力学的结合,来模拟细胞外囊泡(EV)挤压过程中的纳米孔形成和预测药物装载。将 EV CG 珠与隐式的格子玻尔兹曼溶剂耦合。分析了 EV 特性和各种挤压测试参数(如 EV 大小、流速、通道宽度和长度)对孔形成和药物装载效率的影响。基于模拟结果,提供了一个相图作为纳米通道几何形状和挤压速度的设计指南,以在不破坏 EV 的情况下在膜上生成孔。该方法可用于优化纳米流道装置的配置和流动设置,以获得所需的 EV 药物装载。

相似文献

1
Coarse-grained molecular simulation of extracellular vesicle squeezing for drug loading.
Phys Chem Chem Phys. 2023 May 3;25(17):12308-12321. doi: 10.1039/d3cp00387f.
2
Numerical simulation of intracellular drug delivery via rapid squeezing.
Biomicrofluidics. 2021 Aug 2;15(4):044102. doi: 10.1063/5.0059165. eCollection 2021 Jul.
3
Quantification of protein cargo loading into engineered extracellular vesicles at single-vesicle and single-molecule resolution.
J Extracell Vesicles. 2021 Aug;10(10):e12130. doi: 10.1002/jev2.12130. Epub 2021 Aug 2.
4
Standardization Approaches for Extracellular Vesicle Loading with Oligonucleotides and Biologics.
Small. 2023 Oct;19(40):e2301763. doi: 10.1002/smll.202301763. Epub 2023 Jun 7.
5
Virus-Free Method to Control and Enhance Extracellular Vesicle Cargo Loading and Delivery.
ACS Appl Bio Mater. 2023 Mar 20;6(3):1081-1091. doi: 10.1021/acsabm.2c00955. Epub 2023 Feb 13.
6
Translating extracellular vesicle packaging into therapeutic applications.
Front Immunol. 2022 Aug 15;13:946422. doi: 10.3389/fimmu.2022.946422. eCollection 2022.
7
Extracellular Vesicle (EV) biohybrid systems for cancer therapy: Recent advances and future perspectives.
Semin Cancer Biol. 2021 Sep;74:45-61. doi: 10.1016/j.semcancer.2021.02.006. Epub 2021 Feb 17.
8
Extracellular Vesicle Nanoarchitectonics for Novel Drug Delivery Applications.
Small. 2021 Oct;17(42):e2102220. doi: 10.1002/smll.202102220. Epub 2021 Jul 3.
9
Extracellular Vesicles as Drug Delivery Systems - Methods of Production and Potential Therapeutic Applications.
Curr Pharm Des. 2019;25(2):132-154. doi: 10.2174/1381612825666190306153318.
10
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design.
Adv Drug Deliv Rev. 2021 Jun;173:252-278. doi: 10.1016/j.addr.2021.03.017. Epub 2021 Mar 31.

引用本文的文献

3
Microphysiologically Engineered Vessel-Tumor Model to Investigate Vascular Transport Dynamics of Immune Cells.
ACS Appl Mater Interfaces. 2024 Apr 23;16(18):22839-49. doi: 10.1021/acsami.4c00391.
4
Acoustofluidic Engineering of Functional Vessel-on-a-Chip.
ACS Biomater Sci Eng. 2023 Nov 13;9(11):6273-6281. doi: 10.1021/acsbiomaterials.3c00925. Epub 2023 Oct 3.
6
Acoustofluidic Engineering Functional Vessel-on-a-Chip.
ArXiv. 2023 Aug 17:arXiv:2308.06219v2.

本文引用的文献

1
Numerical simulation of intracellular drug delivery via rapid squeezing.
Biomicrofluidics. 2021 Aug 2;15(4):044102. doi: 10.1063/5.0059165. eCollection 2021 Jul.
2
A High-Throughput Nanofluidic Device for Exosome Nanoporation to Develop Cargo Delivery Vehicles.
Small. 2021 Sep;17(35):e2102150. doi: 10.1002/smll.202102150. Epub 2021 Jul 21.
4
Computer simulations of a heterogeneous membrane with enhanced sampling techniques.
J Chem Phys. 2020 Oct 14;153(14):144110. doi: 10.1063/5.0014176.
5
Coarse-Grained Modeling of Pore Dynamics on the Red Blood Cell Membrane under Large Deformations.
Biophys J. 2020 Aug 4;119(3):471-482. doi: 10.1016/j.bpj.2020.06.016. Epub 2020 Jun 24.
6
Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles.
Methods. 2020 May 1;177:103-113. doi: 10.1016/j.ymeth.2020.01.001. Epub 2020 Jan 7.
8
Massively-Parallelized, Deterministic Mechanoporation for Intracellular Delivery.
Nano Lett. 2020 Feb 12;20(2):860-867. doi: 10.1021/acs.nanolett.9b03175. Epub 2019 Oct 28.
9
Effects of hydrophobicity, tethering and size on flow-induced activation of von Willebrand factor multimers.
J Theor Biol. 2020 Jan 21;485:110050. doi: 10.1016/j.jtbi.2019.110050. Epub 2019 Oct 13.
10
Multifunctional Branched Nanostraw-Electroporation Platform for Intracellular Regulation and Monitoring of Circulating Tumor Cells.
Nano Lett. 2019 Oct 9;19(10):7201-7209. doi: 10.1021/acs.nanolett.9b02790. Epub 2019 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验