Panyam Pradeep K R, Buchmeiser Michael R
Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.
Faraday Discuss. 2023 Aug 11;244(0):39-50. doi: 10.1039/d2fd00152g.
Polymeric mesoporous monoliths were prepared ring-opening metathesis polymerization (ROMP) from norbornene (NBE), 1,4,4a,5,8,8a-hexahydro-1,4,5,8-,-dimethanonaphthalene (DMN-H), tris(norborn-2-enylmethylenoxy)methylsilane and the 1-generation Grubbs catalyst [RuCl(PCy)(CHCH)] in the presence of 2-propanol and toluene and surface grafted with 1-(2-((norborn-5-ene-2-carbonyl)oxy)ethyl)-3-ethyl-1-imidazol-3-ium tetrafluoroborate. Subsequently, a supported ionic-liquid-phase (SILP) system was created by immobilizing the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF] with the cationic catalyst [Rh((1-pyrid-1-yl)-3-mesitylimidazol-2-ylidene)(COD)BF] (Rh-1; COD = 1,4-cyclooctadiene) dissolved therein. The regio- and stereoselectivity of Rh-1 dissolved in the IL and supported on the mesoporous monolith, referred to as Rh@SILPROMP, in the hydrosilylation of 1-alkynes with HSiMePh was studied and compared to that of the homogeneous catalyst Rh-1 under biphasic conditions using methyl -butyl ether (MTBE) as a second organic phase. Different amounts of IL were used, which allowed for the creation of SILPs with different layer thicknesses. Rh@SILPROMP provided by far better β-() selectivity for both aromatic and aliphatic 1-alkynes in comparison to Rh-1 used under biphasic conditions. The highest β-() selectivity was obtained with the thinnest IL layer. No leaching of the IL or rhodium from the SILP system into the organic phase was observed, resulting in virtually metal-free hydrosilylation products. The data obtained with Rh@SILPROMP were also compared with those from previous studies with Rh-1 in the same IL supported on polyurethane-derived mesoporous monolithic supports (Rh@SILPPUR) and on mesoporous SBA-15 (Rh@SILPSBA-15). For the first time, the use of a liquid confinement created by both a SILP and the support itself to tune the transition state of an organometallic catalyst by non-covalent interactions and thus stereo- and regioselectivity is outlined.
通过降冰片烯(NBE)、1,4,4a,5,8,8a-六氢-1,4,5,8-二亚甲基萘(DMN-H)、三(降冰片-2-烯基亚甲基氧基)甲基硅烷和第一代格拉布催化剂[RuCl(PCy)(CHCH)]在异丙醇和甲苯存在下进行开环易位聚合反应制备了聚合物介孔整体材料,并表面接枝了1-(2-((降冰片-5-烯-2-羰基)氧基)乙基)-3-乙基-1-咪唑-3-鎓四氟硼酸盐。随后,通过将离子液体(IL)1-丁基-3-甲基咪唑鎓四氟硼酸盐[BMIM][BF]与溶解在其中的阳离子催化剂[Rh((1-吡啶-1-基)-3-均三甲苯咪唑-2-亚基)(COD)BF](Rh-1;COD = 1,4-环辛二烯)固定化,创建了负载离子液体相(SILP)体系。研究了溶解在IL中并负载在介孔整体材料上的Rh-1(称为Rh@SILPROMP)在1-炔烃与HSiMePh的硅氢化反应中的区域选择性和立体选择性,并与在双相条件下使用甲基叔丁基醚(MTBE)作为第二有机相的均相催化剂Rh-1进行了比较。使用了不同量的IL,这使得能够创建具有不同层厚度的SILP。与在双相条件下使用的Rh-1相比,Rh@SILPROMP对芳香族和脂肪族1-炔烃均提供了迄今为止更好的β-()选择性。IL层最薄时获得了最高的β-()选择性。未观察到IL或铑从SILP体系中浸出到有机相中,从而得到几乎无金属的硅氢化产物。还将用Rh@SILPROMP获得的数据与先前在负载于聚氨酯衍生介孔整体载体(Rh@SILPPUR)和介孔SBA-15(Rh@SILPSBA-15)上的相同IL中使用Rh-1的研究数据进行了比较。首次概述了利用SILP和载体本身共同产生的液体限制通过非共价相互作用调节有机金属催化剂的过渡态,从而调节立体选择性和区域选择性。