Department of Physics, University of Agriculture Faisalabad, 38040, Pakistan.
Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan.
Dalton Trans. 2023 May 16;52(19):6343-6359. doi: 10.1039/d3dt00684k.
Solar photocatalysis has emerged as a pollution-free and inexhaustible technique that has been extensively researched in the domains of environmental remediation and energy production. Herein, we have integrated ZnO and CdS nanoparticles through Cu as a solid-state electron mediator to design a ZnO-Cu-CdS Z-scheme heterosystem a sol-gel route and further tested this as a photocatalyst for dye degradation, H evolution, and CO reduction. Within 60 min of visible light exposure, about 97% of methylene blue (MB) is degraded with a degradation rate constant of 0.042 min for the ZnOCuCdS catalyst. The MB degradation with this catalyst is 84, 21, 4.8, and 2 times as high as those of ZnO, CdS, ZnOCdS, and CuZnO catalysts. The ZnO-Cu-CdS catalyst manifests an H evolution efficiency of 5579 μmol h g, which is 169, 41, 3.9, and 3.5 times as high as those of ZnO, CdS, ZnOCdS, and CuZnO catalysts. Using H as a reducing agent, the CO production rate over the ZnOCuCdS catalyst reaches 770 μmol h g, which is 3 and 1.8 times higher than those of ZnOCdS and CuZnO catalysts. Besides, the optimal CH production rate over ZnOCuCdS reaches 890 μmol h g. The improved photocatalytic response of the ZnO-Cu-CdS catalyst is assigned to the delayed recombination of photoexcited charge carriers through a Z-scheme charge transport mode, maintaining the photocarriers with strong redox potentials and the dual role of Cu to serve as a conductive bridge to accelerate the charge transfer rate and enhance the light absorption due to its SPR phenomenon. This research offers a promising strategy for developing binary/ternary Z-scheme heterojunction photocatalytic systems for different photocatalytic applications.
太阳能光催化作为一种无污染、取之不尽的技术,在环境修复和能源生产领域得到了广泛的研究。在此,我们通过铜将 ZnO 和 CdS 纳米粒子集成到一个固态电子媒介体中,设计了一个 ZnO-Cu-CdSZ 型异质体系,采用溶胶-凝胶法进一步将其作为光催化剂进行染料降解、H2 析出和 CO 还原测试。在可见光照射 60 min 内,ZnOCuCdS 催化剂对亚甲基蓝(MB)的降解率约为 97%,降解速率常数为 0.042 min。与 ZnO、CdS、ZnOCdS 和 CuZnO 催化剂相比,该催化剂对 MB 的降解速率分别提高了 84、21、4.8 和 2 倍。ZnO-Cu-CdS 催化剂的 H2 析出效率为 5579 μmol h g,分别是 ZnO、CdS、ZnOCdS 和 CuZnO 催化剂的 169、41、3.9 和 3.5 倍。使用 H2 作为还原剂,ZnOCuCdS 催化剂上的 CO 生成速率达到 770 μmol h g,分别是 ZnOCdS 和 CuZnO 催化剂的 3 和 1.8 倍。此外,ZnOCuCdS 上 CH4 的最佳生成速率达到 890 μmol h g。ZnO-Cu-CdS 催化剂光催化响应的提高归因于 Z 型电荷传输模式下光生载流子的延迟复合,保持了具有强氧化还原电位的光载流子,并通过其 SPR 现象,Cu 的双重作用是作为导电桥,以加速电荷转移速率并增强光吸收。这项研究为开发用于不同光催化应用的二元/三元 Z 型异质结光催化系统提供了一种有前景的策略。