Suppr超能文献

将氢氧化镍纳米颗粒整合到硫化镉上用于高效无贵金属光催化析氢

Integrating Ni(OH) Nanoparticles on CdS for Efficient Noble-Metal-Free Photocatalytic H Evolution.

作者信息

Wang Zemeng, Wu Piaopiao, Huang Weiya, Yang Kai, Lu Kangqiang, Hong Zhaoguo

机构信息

Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.

School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China.

出版信息

Molecules. 2024 Dec 10;29(24):5821. doi: 10.3390/molecules29245821.

Abstract

Photocatalytic hydrogen evolution using inexhaustible clean solar energy is considered as a promising strategy. In order to build an efficient photocatalytic hydrogen production system to satisfy the demands of practical applications, it is of great significance to design photocatalysts that offer high activity, low cost, and high stability. Herein, a series of cheap CdS/Ni(OH) composite photocatalysts were designed and synthesized using the hydrothermal method. The introduction of a Ni(OH) cocatalyst multiplied the reactive active site of cadmium sulfide and promoted the transfer of photoinduced electrons in a semiconductor. Therefore, CdS/Ni(OH) composites demonstrate significantly better photocatalytic performance, and the hydrogen production rate of an optimal CdS/5%Ni(OH) composite is 6.9 times higher than that of blank CdS. Furthermore, the stability test also showed that CdS/Ni(OH) had good stability. This study aims to serve as a rewarding reference for the development of high-performance composite photocatalysts.

摘要

利用取之不尽的清洁太阳能进行光催化析氢被认为是一种很有前景的策略。为了构建一个高效的光催化制氢系统以满足实际应用的需求,设计具有高活性、低成本和高稳定性的光催化剂具有重要意义。在此,采用水热法设计并合成了一系列廉价的CdS/Ni(OH)复合光催化剂。引入Ni(OH)助催化剂使硫化镉的反应活性位点成倍增加,并促进了半导体中光生电子的转移。因此,CdS/Ni(OH)复合材料表现出明显更好的光催化性能,最佳的CdS/5%Ni(OH)复合材料的产氢速率比空白CdS高6.9倍。此外,稳定性测试还表明CdS/Ni(OH)具有良好的稳定性。本研究旨在为高性能复合光催化剂的开发提供有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98da/11677877/b22ab7dbe320/molecules-29-05821-g001.jpg

相似文献

1
Integrating Ni(OH) Nanoparticles on CdS for Efficient Noble-Metal-Free Photocatalytic H Evolution.
Molecules. 2024 Dec 10;29(24):5821. doi: 10.3390/molecules29245821.
4
Two-dimensional nickel hydroxide/sulfides nanosheet as an efficient cocatalyst for photocatalytic H evolution over CdS nanospheres.
J Colloid Interface Sci. 2018 Mar 15;514:634-641. doi: 10.1016/j.jcis.2017.12.080. Epub 2017 Dec 29.
6
Nickel-Based Bifunctional Cocatalyst to Enhance CdS Photocatalytic Hydrogen Production.
Langmuir. 2023 Dec 26;39(51):18935-18945. doi: 10.1021/acs.langmuir.3c02855. Epub 2023 Dec 14.
7
Redox Dual-Cocatalyst-Modified CdS Double-Heterojunction Photocatalysts for Efficient Hydrogen Production.
ACS Appl Mater Interfaces. 2020 Oct 14;12(41):46073-46083. doi: 10.1021/acsami.0c12790. Epub 2020 Sep 29.
8
Ultrathin Ni(OH) nanosheets: a new strategy for cocatalyst design on CdS surfaces for photocatalytic hydrogen generation.
RSC Adv. 2019 Jan 10;9(3):1260-1269. doi: 10.1039/c8ra07307d. eCollection 2019 Jan 9.
9
Enhanced photocatalytic H production under visible light on composite photocatalyst (CdS/NiSe nanorods) synthesized in aqueous solution.
J Colloid Interface Sci. 2019 Dec 1;557:1-9. doi: 10.1016/j.jcis.2019.09.014. Epub 2019 Sep 4.
10
Operando bonding nickel thiolate with CdS as efficient photocatalyst for hydrogen evolution.
J Colloid Interface Sci. 2025 Apr;683(Pt 1):942-953. doi: 10.1016/j.jcis.2024.12.141. Epub 2024 Dec 20.

本文引用的文献

1
Metal Sulfide S-Scheme Homojunction for Photocatalytic Selective Phenylcarbinol Oxidation.
Adv Sci (Weinh). 2024 May;11(17):e2400099. doi: 10.1002/advs.202400099. Epub 2024 Feb 28.
2
S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO nanoparticles for photocatalytic CO reduction.
J Environ Sci (China). 2024 Jun;140:103-112. doi: 10.1016/j.jes.2023.05.028. Epub 2023 May 30.
3
Photocatalytic Conversion of Diluted CO into Tunable Syngas via Modulating Transition Metal Hydroxides.
Inorg Chem. 2024 Jan 8;63(1):795-802. doi: 10.1021/acs.inorgchem.3c03802. Epub 2023 Dec 18.
4
Twin boundary defect engineering in Au cocatalyst to promote alcohol splitting for coproduction of H and fine chemicals.
J Colloid Interface Sci. 2024 Mar;657:819-829. doi: 10.1016/j.jcis.2023.11.171. Epub 2023 Dec 1.
5
Site Engineering of Covalent Organic Frameworks for Regulating Peroxymonosulfate Activation to Generate Singlet Oxygen with 100 % Selectivity.
Angew Chem Int Ed Engl. 2023 Oct 23;62(43):e202310934. doi: 10.1002/anie.202310934. Epub 2023 Sep 18.
7
Donor-acceptor engineered g-CN enabling peroxymonosulfate photocatalytic conversion to O with nearly 100% selectivity.
J Hazard Mater. 2023 Apr 15;448:130869. doi: 10.1016/j.jhazmat.2023.130869. Epub 2023 Jan 25.
10
Fabrication of CdS Frame-in-Cage Particles for Efficient Photocatalytic Hydrogen Generation under Visible-Light Irradiation.
Adv Mater. 2020 Oct;32(39):e2004561. doi: 10.1002/adma.202004561. Epub 2020 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验