The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
J Am Chem Soc. 2023 May 24;145(20):10938-10942. doi: 10.1021/jacs.2c12602. Epub 2023 Apr 21.
Microbial rhodopsins are a large family of photoreceptive membrane proteins with diverse light-regulated functions. While the most ubiquitous microbial rhodopsins are light-driven outward proton (H) pumps, new subfamilies of microbial rhodopsins transporting H inwardly, i.e., light-driven inward H pumps, have been discovered recently. Although structural and spectroscopic studies provide insights into their ion transport mechanisms, the minimum key element(s) that determine the direction of H transport have not yet been clarified. Here, we conducted the first functional conversion study by substituting key amino acids in a natural outward H-pumping rhodopsin (R) with those in inward H-pumping rhodopsins. Consequently, an artificial inward H pump was constructed by mutating only three residues of R. This result indicates that these residues govern the key processes that discriminate between outward and inward H pumps. Spectroscopic studies revealed the presence of an inward H-accepting residue in the H transport pathway and direct H uptake from the extracellular solvent. This finding of the simple element for determining H transport would provide a new basis for understanding the concept of ion transport not only by microbial rhodopsins but also by other ion-pumping proteins.
微生物视紫红质是一大类具有多种光调控功能的感光膜蛋白。虽然最普遍的微生物视紫红质是光驱动的外向质子(H)泵,但最近发现了新的微生物视紫红质亚家族,它们向内运输 H,即光驱动的内向 H 泵。尽管结构和光谱研究提供了对其离子传输机制的深入了解,但尚未阐明决定 H 传输方向的最小关键要素。在这里,我们通过用内向 H 泵微生物视紫红质中的关键氨基酸取代天然外向 H 泵微生物视紫红质中的关键氨基酸,进行了首次功能转换研究。因此,仅通过突变 R 的三个残基就构建了人工内向 H 泵。这一结果表明,这些残基控制着区分外向和内向 H 泵的关键过程。光谱研究揭示了 H 运输途径中存在内向 H 接受残基,并直接从细胞外溶剂中摄取 H。这一确定 H 运输的简单元素的发现,不仅为理解微生物视紫红质,也为理解其他离子泵蛋白的离子运输概念提供了新的基础。